Differential Geometry III, Term 1 (Section 7)

7 Tangent plane, first fundamental form and area

7.1 The tangent plane

Definition 7.1. Let S be a regular surface and $p \in S$. A tangent vector to S at p is the tangent vector $\alpha^{\prime}(0) \in \mathbb{R}^{3}$ of a smooth (not necessarily regular) curve $\alpha:(-\varepsilon, \varepsilon) \longrightarrow S \subset \mathbb{R}^{3}$ with $\alpha(0)=p$ (for some $\varepsilon>0)$.

Let $\boldsymbol{x}: U \longrightarrow S$ be a local parametrization of $S, \boldsymbol{q} \in U, \boldsymbol{x}(\boldsymbol{q})=\boldsymbol{p}$. Recall that the differential (or derivative) $d_{\boldsymbol{q}} \boldsymbol{x}$ is a linear $\operatorname{map} d_{\boldsymbol{q}} \boldsymbol{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. By the definition of a regular surface, $d_{\boldsymbol{q}} \boldsymbol{x}$ has full rank at every point, so the dimension of the image is equal to 2 .
Definition 7.2. The plane $d_{\boldsymbol{q}} \boldsymbol{x}\left(\mathbb{R}^{2}\right)$ is called the tangent plane to S at \boldsymbol{p} and is denoted by $T_{\boldsymbol{p}} S$.
Proposition 7.3. Let $\boldsymbol{x}: U \longrightarrow S$ be a local parametrization of a regular surface S with $U \subset \mathbb{R}^{2}$ open, and let $\boldsymbol{q} \in U$. Then Then the tangent plane $T_{\boldsymbol{p}} S$ coincides with the set of all tangent vectors to S at \boldsymbol{p}.

Remark 7.4. (a) Since the definition of a tangent vector does not depend on a parametrization, Prop. 7.3 implies that the tangent plane does not depend on a parametrization either.
(b) If $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$ and $\boldsymbol{w}=\alpha^{\prime}(0)$, then w has coordinates $\left(u^{\prime}(0), v^{\prime}(0)\right)$ with respect to the basis $\left\{\boldsymbol{x}_{u}(\boldsymbol{q}), \boldsymbol{x}_{v}(\boldsymbol{q})\right\}$.

Example 7.5.

(a) Tangent plane to graph of a function: Let $g: U \longrightarrow \mathbb{R}$ be a smooth function on an open subset U of \mathbb{R}^{2}, i.e.

$$
S:=\operatorname{graph} g=\{(u, v, g(u, v)) \mid(u, v) \in U\}
$$

is a regular surface with parametrisation $\boldsymbol{x}(u, v):=(u, v, g(u, v))$. Then the tangent plane $T_{\boldsymbol{p}} S$ to S at $\boldsymbol{p}=(u, v, g(u, v))$ is generated by

$$
\left\{\boldsymbol{x}_{u}(\boldsymbol{q}), \boldsymbol{x}_{v}(\boldsymbol{q})\right\}=\left\{\left(1,0, g_{u}(u, v)\right),\left(0,1, g_{v}(u, v)\right)\right\}
$$

where $\boldsymbol{q}=(u, v)$.
(b) Tangent plane to a level set of a function: Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a smooth function, and let $c \in \mathbb{R}$ be a regular value of f (i.e., $\nabla f(\boldsymbol{p}) \neq \mathbf{0}$ for all $\boldsymbol{p} \in \mathbb{R}^{3}$ with $f(\boldsymbol{p})=c$). We have seen that $S:=f^{-1}(c)$ is a regular surface.

Lemma 7.6. Let $\boldsymbol{p} \in S$, then $T_{p} S$ is the plane in \mathbb{R}^{3} orthogonal to $\nabla f(\boldsymbol{p})$.

7.2 The first fundamental form

Let $\boldsymbol{p} \in S$. We can consider the restriction of the inner product $(\cdot): \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R},(\boldsymbol{v}, \boldsymbol{w}) \mapsto \boldsymbol{v} \cdot \boldsymbol{w}$, to $T_{p} S \subset \mathbb{R}^{3}$. We denote the restriction by $\langle\cdot, \cdot\rangle_{\boldsymbol{p}}$, i.e.,

$$
\langle\cdot, \cdot\rangle_{\boldsymbol{p}}: T_{\boldsymbol{p}} S \times T_{\boldsymbol{p}} S \longrightarrow \mathbb{R}, \quad\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right) \mapsto \boldsymbol{w}_{1} \cdot \boldsymbol{w}_{2}
$$

This map is

- bilinear, i.e, linear in both of its arguments;
- symmetric, i.e., $\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{1}\right\rangle_{\boldsymbol{p}}=\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\rangle_{\boldsymbol{p}}$ for all $\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in T_{\boldsymbol{p}} S$;
- and positive, i.e., $\|\boldsymbol{w}\|_{\boldsymbol{p}}^{2}:=\langle\boldsymbol{w}, \boldsymbol{w}\rangle \geq 0$ and $\|\boldsymbol{w}\|_{\boldsymbol{p}}^{2}=0$ implies $\boldsymbol{w}=0$ for all $\boldsymbol{w} \in T_{\boldsymbol{p}} S$.

We can now measure the length of a tangent vector $\boldsymbol{w} \in T_{p} S$ and the angle between two tangent vectors $\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in T_{\boldsymbol{p}} S$ by

$$
\sqrt{\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{\boldsymbol{p}}} \quad \text { and } \quad \cos \vartheta=\frac{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\rangle_{\boldsymbol{p}}}{\sqrt{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle_{\boldsymbol{p}}} \sqrt{\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{2}\right\rangle_{\boldsymbol{p}}}}
$$

A quadratic form $I_{\boldsymbol{p}}$ is obtained from a bilinear form $\langle\cdot, \cdot\rangle_{\boldsymbol{p}}$ by setting $I_{\boldsymbol{p}}(\boldsymbol{w}):=\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{\boldsymbol{p}}$.
Definition 7.7. The quadratic form $I_{\boldsymbol{p}}: T_{\boldsymbol{p}} S \longrightarrow \mathbb{R}, I_{\boldsymbol{p}}(\boldsymbol{w}):=\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{\boldsymbol{p}}=\|\boldsymbol{w}\|^{2}$ is called the first fundamental form at $\boldsymbol{p} \in S$.

Definition 7.8. The functions $E, F, G: U \longrightarrow \mathbb{R}$ defined by

$$
E:=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right\rangle_{\boldsymbol{p}}, \quad F:=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle_{\boldsymbol{p}}, \quad G:=\left\langle\boldsymbol{x}_{v}, \boldsymbol{x}_{v}\right\rangle_{\boldsymbol{p}}
$$

are called the coefficients of the first fundamental form in the local parametrization $\boldsymbol{x}: U \longrightarrow S$.
Note that the coefficients of the first fundamental form depend on the parametrisation \boldsymbol{x} !
Remark 7.9. If $(a, b) \in \mathbb{R}^{2}$ are the coordinates of a vector $\boldsymbol{w} \in T_{\boldsymbol{p}} S$ with respect to the basis $\left\{\boldsymbol{x}_{u}(\boldsymbol{q}), \boldsymbol{x}_{v}(\boldsymbol{q})\right\}$, then

$$
I_{\boldsymbol{p}}(\boldsymbol{w})=a^{2} E+2 a b F+b^{2} G=\left(\begin{array}{ll}
a & b
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \cdot\binom{a}{b} .
$$

Since $I_{\boldsymbol{p}}$ is positive $\left(I_{\boldsymbol{p}}(\boldsymbol{w})=\|\boldsymbol{w}\|^{2} \geq 0\right.$ and $I_{\boldsymbol{p}}(\boldsymbol{w})=0$ implies $\left.\boldsymbol{w}=\mathbf{0}\right)$, we have

$$
E>0, \quad G>0 \quad \text { and } \quad \operatorname{det}\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)=E G-F^{2}>0 .
$$

Example 7.10. Let S be a plane in \mathbb{R}^{3} given by an equation $a x+b y+c z+d=0$, and assume without loos of generality that $c \neq 0$. Then

$$
\boldsymbol{x}_{x}(x, y)=(1,0,-a / c) \quad \text { and } \quad \boldsymbol{x}_{y}(x, y)=(0,1,-b / c) .
$$

In particular, we have

$$
E(x, y)=1+\frac{a^{2}}{c^{2}}, \quad F(x, y)=\frac{a b}{c^{2}}, \quad G(x, y)=1+\frac{b^{2}}{c^{2}}
$$

Example 7.11. Coefficients of the first fundamental form for a graph of a function: Let a surface be given by a graph of a function g, namely $\boldsymbol{x}(u, v):=(u, v, g(u, v))=\left(u, v, u^{2}+v^{2}\right)$ for $(u, v) \in U:=\mathbb{R}^{2}$. Then

$$
\boldsymbol{x}_{u}(u, v)=\left(1,0, g_{u}\right)=(1,0,2 u) \quad \text { and } \quad \boldsymbol{x}_{v}(u, v)=\left(0,1, g_{v}\right)=(0,1,2 v) .
$$

In particular, we have

$$
\begin{array}{ll}
E=\left(1,0, g_{u}\right) \cdot\left(1,0, g_{u}\right)=1+g_{u}^{2}, & \text { here } E(u, v)=1+4 u^{2} \\
F=\left(1,0, g_{u}\right) \cdot\left(0,1, g_{v}\right)=g_{u} g_{v}, & \text { here } F(u, v)=8 u v, \\
G=\left(0,1, g_{v}\right) \cdot\left(0,1, g_{v}\right)=1+g_{v}^{2} & \text { here } \quad G(u, v)=1+4 v^{2},
\end{array}
$$

Example 7.12. Coefficients of the first fundamental form for a surface of revolution: Let S be obtained by rotating the space curve given by $\boldsymbol{\alpha}(v)=(f(v), 0, g(v)), v \in \mathbb{R}$, around the z-axis (without self-intersections and without meeting the z-axis, i.e., $f(v)=0$). A parametrization is then given by

$$
\boldsymbol{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

$(u, v) \in(-\pi, \pi) \times \mathbb{R}$. Here, we have

$$
\boldsymbol{x}_{u}(u, v)=(-f(v) \sin u, f(v) \cos u, 0) \quad \text { and } \quad \boldsymbol{x}_{v}(u, v)=\left(f^{\prime}(v) \cos u, f^{\prime}(v) \sin u, g^{\prime}(v)\right) .
$$

The coefficients of the first fundamental form in this parametrization are

$$
E(u, v)=f(v)^{2}, \quad F(u, v)=0 \quad \text { and } \quad G(u, v)=\left|f^{\prime}(v)\right|^{2}+\left|g^{\prime}(v)\right|^{2}=\left\|\boldsymbol{\alpha}^{\prime}(v)\right\|^{2}
$$

7.3 Arc lengths of a curve and angles between curves in a surface

The aim of the following remark is to calculate the arc length of a curve in a surface using only the coefficients of the first fundamental form.

Definition 7.13. Let $\boldsymbol{\alpha}: I \longrightarrow S$ be a curve on a regular surface S. Then the length of $\boldsymbol{\alpha}$, measured from a point $\boldsymbol{\alpha}\left(u_{0}\right)$ for some $u_{0} \in I$, is

$$
\ell(u):=\int_{u_{0}}^{u} \sqrt{\left\langle\boldsymbol{\alpha}^{\prime}(s), \boldsymbol{\alpha}^{\prime}(s)\right\rangle_{\boldsymbol{\alpha}(s)}} \mathrm{d} s
$$

Proposition 7.14 (evident).

$$
\ell(u):=\int_{u_{0}}^{u}\left[I_{\boldsymbol{\alpha}(s)}\left(\boldsymbol{\alpha}^{\prime}(s)\right)\right]^{1 / 2} \mathrm{~d} s .
$$

Remark 7.15. Let $\alpha: I \longrightarrow S$ be a curve on a regular surface S and $\boldsymbol{x}: U \longrightarrow S$ a local parametrization such that $\boldsymbol{\alpha}(I) \subset \boldsymbol{x}(U)$. Denote by $\boldsymbol{\beta}=(u, v)$ the corresponding curve in the parameter domain (i.e., $\boldsymbol{\alpha}(s)=\boldsymbol{x}(\boldsymbol{\beta}(s))=\boldsymbol{x}(u(s), v(s)))$.

Let E, F, G be the coefficients of the first fundamental form w.r.t. the parametrization \boldsymbol{x}. Then the arc lengths of $\boldsymbol{\alpha}$ from $s_{0} \in I$ to $s_{1} \in I$ can be expressed in terms of E, F, G only as follows:

$$
\ell\left(s_{1}\right)=\int_{s_{0}}^{s_{1}}\left[I_{\boldsymbol{\alpha}(t)}\left(\boldsymbol{\alpha}^{\prime}(t)\right)\right]^{1 / 2} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \sqrt{u^{\prime}(t)^{2} E(\boldsymbol{\beta}(t))+2 u^{\prime}(t) v^{\prime}(t) F(\boldsymbol{\beta}(t))+v^{\prime}(t)^{2} G(\boldsymbol{\beta}(t))} \mathrm{d} t
$$

Example 7.16. The hyperbolic plane. We construct a surface by fixing the coefficients of the first fundamental form E, F, G only. Actually, this is the first example which cannot (in total) be realized as a surface in \mathbb{R}^{3}.

Let $U:=\left\{(u, v) \in \mathbb{R}^{2} \mid v>0\right\}$ be the upper halfplane and set

$$
E(u, v):=\frac{1}{v^{2}}, \quad F(u, v):=0 \quad \text { and } \quad G(u, v):=\frac{1}{v^{2}},
$$

i.e., $F=0$ and $E=G$.

Let us now assume that there is a surface S in an ambient space \mathbb{R}^{n} and a parametrization $\boldsymbol{x}: U \longrightarrow S$ such that the corresponding coefficients of the fundamental form have the desired form.

Consider a curve $\boldsymbol{\alpha}:(0, \infty) \longrightarrow S$ given by $\boldsymbol{\alpha}(s)=\boldsymbol{x}(0, s)$. In the coordinates on U, the curve has the form $\boldsymbol{\beta}:(0, \infty) \longrightarrow U, \boldsymbol{\beta}(s)=(0, s)$. Then

$$
\left\|\boldsymbol{\alpha}^{\prime}(s)\right\|^{2}=0 E(0, s)+0+1 G(0, s)=\frac{1}{s^{2}}
$$

Therefore, the arc length of $\boldsymbol{\alpha}$ from $\boldsymbol{\alpha}(a)$ to $\boldsymbol{\alpha}(b)$ on S is

$$
\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(s)\right\| \mathrm{d} s=\int_{a}^{b} \frac{1}{s} \mathrm{~d} s=\log b-\log a=\log \frac{b}{a}
$$

The upper half-plane $U=\mathbb{R} \times(0, \infty)$ together with the first fundamental form above is called the upper half-plane model of the hyperbolic plane. The corresponding surface S, the hyperbolic plane, is sometimes denoted by \mathbb{H}.

Remark. Coordinate curves and angle. Let $\boldsymbol{x}: U \longrightarrow S$ be a parametrization of a regular surface $S \subset \mathbb{R}^{n},\left(u_{0}, v_{0}\right) \in U$. Consider the curves

$$
\boldsymbol{\alpha}_{1}(s)=\boldsymbol{x}\left(u_{0}+s, v_{0}\right) \quad \text { and } \quad \boldsymbol{\alpha}_{2}(s)=\boldsymbol{x}\left(u_{0}, v_{0}+s\right)
$$

with s being small. These curves are called the coordinate curves of the parametrization \boldsymbol{x}. The angle formed by the two curves meeting in $\left(u_{0}, v_{0}\right)$ can be calculated by

$$
\cos \vartheta=\frac{\boldsymbol{\alpha}_{1}^{\prime}(0) \cdot \boldsymbol{\alpha}_{2}^{\prime}(0)}{\left\|\boldsymbol{\alpha}_{1}^{\prime}(0)\right\|\left\|\boldsymbol{\alpha}_{2}^{\prime}(0)\right\|}
$$

But $\boldsymbol{\alpha}_{1}^{\prime}(0)=\boldsymbol{x}_{u}\left(u_{0}, v_{0}\right)$ and $\boldsymbol{\alpha}_{2}^{\prime}(0)=\boldsymbol{x}_{v}\left(u_{0}, v_{0}\right)$, so that (omitting the argument $\left.\left(u_{0}, v_{0}\right)\right)$

$$
\cos \vartheta=\frac{\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{v}}{\left\|\boldsymbol{x}_{u}\right\|\left\|\boldsymbol{x}_{v}\right\|}=\frac{F}{\sqrt{E G}} .
$$

7.4 Area of subsets of a surface

Definition 7.17. Let $R_{0} \subset U, R=\boldsymbol{x}\left(R_{0}\right) \subset S$. The area of a region $R=\boldsymbol{x}\left(R_{0}\right)$ is defined as

$$
\operatorname{area}(R):=\int_{R_{0}} \sqrt{E G-F^{2}} \mathrm{~d} u \mathrm{~d} v
$$

Example 7.18. Let S be a half of a cylinder parametrized by

$$
\boldsymbol{x}(u, v)=\left(u, v, \sqrt{1-v^{2}}\right), \quad(u, v) \in U=(-1,1) \times(-1,1)
$$

Then $E \equiv 1, F \equiv 0, G=1 /\left(1-v^{2}\right)$, so

$$
\operatorname{area}(S)=\int_{U} \sqrt{E G-F^{2}} \mathrm{~d} u \mathrm{~d} v=\int_{-1}^{1} \mathrm{~d} u \int_{-1}^{1} \sqrt{1 /\left(1-v^{2}\right)} \mathrm{d} v=2 \pi
$$

The definition of area depends at first sight on the local parametrization $\boldsymbol{x}: U \longrightarrow S$. Actually, it does not:

Proposition 7.19. Assume that we have two local parametrizations $\boldsymbol{x}_{1}: U_{1} \longrightarrow S$ and $\boldsymbol{x}_{2}: U_{2} \longrightarrow S$ with $\boldsymbol{x}_{1}\left(U_{1}\right)=\boldsymbol{x}_{2}\left(U_{2}\right)=: W$. Denote by E_{1}, F_{1}, G_{1} and E_{2}, F_{2}, G_{2} the coefficients of the first fundamental form in the parametrisation \boldsymbol{x}_{1} and \boldsymbol{x}_{2}, respectively.

Let $R \subset W$. Denote by $R_{1}:=x_{1}^{-1}(R)$ and $R_{2}:=x_{2}^{-1}(R)$ the corresponding regions in the respective parameter domains. Then

$$
\int_{R_{1}} \sqrt{E_{1} G_{1}-F_{1}^{2}} \mathrm{~d} u_{1} \mathrm{~d} v_{1}=\int_{R_{2}} \sqrt{E_{2} G_{2}-F_{2}^{2}} \mathrm{~d} u_{2} \mathrm{~d} v_{2}
$$

Example 7.20.

(a) The sphere. Let S be the sphere of radius $r>0$ in \mathbb{R}^{3},

$$
\boldsymbol{x}(u, v)=(r \cos u \sin v, r \sin u \sin v, r \cos v)
$$

(v measures latitude, u measures longitude, and (u, v) are called spherical coordinates). We have

$$
E(u, v)=r^{2} \sin ^{2} v, \quad F(u, v)=0 \quad \text { and } \quad G(u, v)=r^{2}
$$

so that $E G-F^{2}=r^{4} \sin ^{2} v$.
Let us compute the area of a "slice" of the sphere enclosed by planes $z=z_{0}$ and $z=z_{1}$, where $-r \leq z_{1}<z_{0} \leq r$. This corresponds to the domain $\arccos z_{0} \leq v \leq \arccos z_{1}, u \in(0,2 \pi)$. Therefore the area is

$$
\int_{0}^{2 \pi} \mathrm{~d} u \int_{\arccos z_{0}}^{\arccos z_{1}} r^{2} \sin ^{2} v \mathrm{~d} v=2 \pi r^{2}\left(z_{0}-z_{1}\right)
$$

(b) Torus of revolution: Consider the parametrization

$$
\begin{gathered}
\boldsymbol{x}: U:=(0,2 \pi) \times(0,2 \pi) \longrightarrow S, \\
\boldsymbol{x}(u, v):=((R+r \cos v) \cos u,(R+r \cos v) \sin u, r \sin v)
\end{gathered}
$$

for $0<r<R$. This surface is a surface of revolution, obtained by rotating the curve $\boldsymbol{\alpha}$ given by

$$
\boldsymbol{\alpha}(v)=((R+r \cos v), 0, r \sin v)
$$

(which is a circle of radius r in the (x, z)-plane centered at the point $(R, 0,0))$ around the z-axis. Then

$$
\begin{aligned}
& \boldsymbol{x}_{u}(u, v)=(-(R+r \cos v) \sin u,(R+r \cos v) \cos u, 0), \\
& \boldsymbol{x}_{v}(u, v)=(-r \sin v \cos u,-r \sin v \sin u, r \cos v)
\end{aligned}
$$

and therefore

$$
E(u, v)=(R+r \cos v)^{2}, \quad F(u, v)=0 \quad \text { and } \quad G(u, v)=r^{2} .
$$

In particular, $\sqrt{E G-F^{2}}=(R+r \cos v) r$, hence

$$
\operatorname{area}(S)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(R+r \cos v) r \mathrm{~d} u \mathrm{~d} v=4 \pi^{2} r R
$$

(c) Hyperbolic plane: Recall that we have the parameter domain $U:=\mathbb{R} \times(0, \infty)$ together with the coefficients of the fundamental form

$$
E(u, v)=G(u, v)=\frac{1}{v^{2}}, \quad F(u, v)=0
$$

and $\sqrt{E G-F}(u, v)=1 / v^{2}$. Let $R_{a, b}:=(0, b) \times(a, 2 a)$, then the corresponding region in the hyperbolic plane \mathbb{H} has area

$$
\operatorname{area}(R)=\int_{R_{a, b}} \frac{1}{v^{2}} \mathrm{~d} u \mathrm{~d} v=\int_{0}^{b} \mathrm{~d} u \int_{a}^{2 a} \frac{1}{v^{2}} \mathrm{~d} v=b / 2 a .
$$

In particular, if $b=a$, we obtain $1 / 2$ which does not depend on a.

