Differential Geometry III, Term 1 (Section 7)

7 Tangent plane, first fundamental form and area

7.1 The tangent plane

Definition 7.1. Let S be a regular surface and $p \in S$. A *tangent vector* to S at p is the tangent vector $\alpha'(0) \in \mathbb{R}^3$ of a smooth (not necessarily regular) curve $\alpha: (-\varepsilon, \varepsilon) \longrightarrow S \subset \mathbb{R}^3$ with $\alpha(0) = p$ (for some $\varepsilon > 0$).

Let $\boldsymbol{x}: U \longrightarrow S$ be a local parametrization of $S, \boldsymbol{q} \in U, \boldsymbol{x}(\boldsymbol{q}) = \boldsymbol{p}$. Recall that the differential (or derivative) $d_{\boldsymbol{q}}\boldsymbol{x}$ is a linear map $d_{\boldsymbol{q}}\boldsymbol{x}: \mathbb{R}^2 \to \mathbb{R}^3$. By the definition of a regular surface, $d_{\boldsymbol{q}}\boldsymbol{x}$ has full rank at every point, so the dimension of the image is equal to 2.

Definition 7.2. The plane $d_{q} \mathbf{x}(\mathbb{R}^2)$ is called the *tangent plane* to S at \mathbf{p} and is denoted by $T_{\mathbf{p}}S$.

Proposition 7.3. Let $x: U \longrightarrow S$ be a local parametrization of a regular surface S with $U \subset \mathbb{R}^2$ open, and let $q \in U$. Then Then the tangent plane T_pS coincides with the set of all tangent vectors to S at p.

- **Remark 7.4.** (a) Since the definition of a tangent vector does not depend on a parametrization, Prop. 7.3 implies that the tangent plane does not depend on a parametrization either.
 - (b) If $\alpha(s) = \mathbf{x}(u(s), v(s))$ and $\mathbf{w} = \alpha'(0)$, then w has coordinates (u'(0), v'(0)) with respect to the basis $\{\mathbf{x}_u(\mathbf{q}), \mathbf{x}_v(\mathbf{q})\}$.

Example 7.5.

(a) **Tangent plane to graph of a function:** Let $g: U \longrightarrow \mathbb{R}$ be a smooth function on an open subset U of \mathbb{R}^2 , i.e.

 $S := \operatorname{graph} g = \{ (u, v, g(u, v)) \mid (u, v) \in U \}$

is a regular surface with parametrisation $\boldsymbol{x}(u,v) := (u,v,g(u,v))$. Then the tangent plane $T_{\boldsymbol{p}}S$ to S at $\boldsymbol{p} = (u,v,g(u,v))$ is generated by

$$\{\boldsymbol{x}_{u}(\boldsymbol{q}), \boldsymbol{x}_{v}(\boldsymbol{q})\} = \{(1, 0, g_{u}(u, v)), (0, 1, g_{v}(u, v))\},\$$

where $\boldsymbol{q} = (u, v)$.

(b) Tangent plane to a level set of a function: Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be a smooth function, and let $c \in \mathbb{R}$ be a regular value of f (i.e., $\nabla f(\mathbf{p}) \neq \mathbf{0}$ for all $\mathbf{p} \in \mathbb{R}^3$ with $f(\mathbf{p}) = c$). We have seen that $S := f^{-1}(c)$ is a regular surface.

Lemma 7.6. Let $p \in S$, then T_pS is the plane in \mathbb{R}^3 orthogonal to $\nabla f(p)$.

7.2 The first fundamental form

Let $\boldsymbol{p} \in S$. We can consider the restriction of the inner product $(\cdot) \colon \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}, (\boldsymbol{v}, \boldsymbol{w}) \mapsto \boldsymbol{v} \cdot \boldsymbol{w}$, to $T_{\boldsymbol{p}}S \subset \mathbb{R}^3$. We denote the restriction by $\langle \cdot, \cdot \rangle_{\boldsymbol{p}}$, i.e.,

$$\langle \cdot, \cdot \rangle_{\boldsymbol{p}} \colon T_{\boldsymbol{p}}S \times T_{\boldsymbol{p}}S \longrightarrow \mathbb{R}, \qquad (\boldsymbol{w}_1, \boldsymbol{w}_2) \mapsto \boldsymbol{w}_1 \cdot \boldsymbol{w}_2.$$

This map is

- *bilinear*, i.e, linear in both of its arguments;
- symmetric, i.e., $\langle \boldsymbol{w}_2, \boldsymbol{w}_1 \rangle_{\boldsymbol{p}} = \langle \boldsymbol{w}_1, \boldsymbol{w}_2 \rangle_{\boldsymbol{p}}$ for all $\boldsymbol{w}_1, \boldsymbol{w}_2 \in T_{\boldsymbol{p}}S$;
- and positive, i.e., $\|\boldsymbol{w}\|_{\boldsymbol{p}}^2 := \langle \boldsymbol{w}, \boldsymbol{w} \rangle \ge 0$ and $\|\boldsymbol{w}\|_{\boldsymbol{p}}^2 = 0$ implies $\boldsymbol{w} = 0$ for all $\boldsymbol{w} \in T_{\boldsymbol{p}}S$.

We can now measure the length of a tangent vector $w \in T_pS$ and the angle between two tangent vectors $w_1, w_2 \in T_pS$ by

$$\sqrt{\langle \boldsymbol{w}, \boldsymbol{w}
angle_{\boldsymbol{p}}}$$
 and $\cos \vartheta = rac{\langle \boldsymbol{w}_1, \boldsymbol{w}_2
angle_{\boldsymbol{p}}}{\sqrt{\langle \boldsymbol{w}_1, \boldsymbol{w}_1
angle_{\boldsymbol{p}}} \sqrt{\langle \boldsymbol{w}_2, \boldsymbol{w}_2
angle_{\boldsymbol{p}}}}$

A quadratic form I_p is obtained from a bilinear form $\langle \cdot, \cdot \rangle_p$ by setting $I_p(w) := \langle w, w \rangle_p$.

Definition 7.7. The quadratic form $I_p: T_pS \longrightarrow \mathbb{R}$, $I_p(w) := \langle w, w \rangle_p = ||w||^2$ is called the *first* fundamental form at $p \in S$.

Definition 7.8. The functions $E, F, G: U \longrightarrow \mathbb{R}$ defined by

$$E := \langle \boldsymbol{x}_u, \boldsymbol{x}_u \rangle_{\boldsymbol{p}}, \quad F := \langle \boldsymbol{x}_u, \boldsymbol{x}_v \rangle_{\boldsymbol{p}}, \quad G := \langle \boldsymbol{x}_v, \boldsymbol{x}_v \rangle_{\boldsymbol{p}}$$

are called the *coefficients* of the first fundamental form in the local parametrization $x: U \longrightarrow S$.

Note that the coefficients of the first fundamental form depend on the parametrisation x!

Remark 7.9. If $(a, b) \in \mathbb{R}^2$ are the coordinates of a vector $w \in T_p S$ with respect to the basis $\{x_u(q), x_v(q)\}$, then

$$I_{p}(\boldsymbol{w}) = a^{2}E + 2abF + b^{2}G = \begin{pmatrix} a & b \end{pmatrix} \cdot \begin{pmatrix} E & F \\ F & G \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}$$

Since I_p is positive $(I_p(w) = ||w||^2 \ge 0$ and $I_p(w) = 0$ implies w = 0, we have

$$E > 0$$
, $G > 0$ and $\det \begin{pmatrix} E & F \\ F & G \end{pmatrix} = EG - F^2 > 0$.

Example 7.10. Let S be a plane in \mathbb{R}^3 given by an equation ax + by + cz + d = 0, and assume without loos of generality that $c \neq 0$. Then

$$x_x(x,y) = (1,0,-a/c)$$
 and $x_y(x,y) = (0,1,-b/c).$

In particular, we have

$$E(x,y) = 1 + \frac{a^2}{c^2}, \qquad F(x,y) = \frac{ab}{c^2}, \qquad G(x,y) = 1 + \frac{b^2}{c^2}$$

Example 7.11. Coefficients of the first fundamental form for a graph of a function: Let a surface be given by a graph of a function g, namely $\mathbf{x}(u,v) := (u,v,g(u,v)) = (u,v,u^2 + v^2)$ for $(u,v) \in U := \mathbb{R}^2$. Then

$$\boldsymbol{x}_u(u,v) = (1,0,g_u) = (1,0,2u)$$
 and $\boldsymbol{x}_v(u,v) = (0,1,g_v) = (0,1,2v).$

In particular, we have

$$\begin{split} E &= (1,0,g_u) \cdot (1,0,g_u) = 1 + g_u^2, & \text{here} \quad E(u,v) = 1 + 4u^2, \\ F &= (1,0,g_u) \cdot (0,1,g_v) = g_u g_v, & \text{here} \quad F(u,v) = 8uv, \\ G &= (0,1,g_v) \cdot (0,1,g_v) = 1 + g_v^2 & \text{here} \quad G(u,v) = 1 + 4v^2, \end{split}$$

Example 7.12. Coefficients of the first fundamental form for a surface of revolution: Let S be obtained by rotating the space curve given by $\alpha(v) = (f(v), 0, g(v)), v \in \mathbb{R}$, around the z-axis (without self-intersections and without meeting the z-axis, i.e., f(v) = 0). A parametrization is then given by

$$\boldsymbol{x}(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$$

 $(u, v) \in (-\pi, \pi) \times \mathbb{R}$. Here, we have

$$\boldsymbol{x}_{u}(u,v) = (-f(v)\sin u, f(v)\cos u, 0)$$
 and $\boldsymbol{x}_{v}(u,v) = (f'(v)\cos u, f'(v)\sin u, g'(v))$

The coefficients of the first fundamental form in this parametrization are

$$E(u,v) = f(v)^2$$
, $F(u,v) = 0$ and $G(u,v) = |f'(v)|^2 + |g'(v)|^2 = ||\alpha'(v)||^2$.

7.3 Arc lengths of a curve and angles between curves in a surface

The aim of the following remark is to calculate the arc length of a curve in a surface using only the coefficients of the first fundamental form.

Definition 7.13. Let $\alpha: I \longrightarrow S$ be a curve on a regular surface S. Then the length of α , measured from a point $\alpha(u_0)$ for some $u_0 \in I$, is

$$\ell(u) := \int_{u_0}^u \sqrt{\langle \boldsymbol{\alpha}'(s), \boldsymbol{\alpha}'(s) \rangle_{\boldsymbol{\alpha}(s)}} \, \mathrm{d}s.$$

Proposition 7.14 (evident).

$$\ell(u) := \int_{u_0}^u [I_{\boldsymbol{\alpha}(s)}(\boldsymbol{\alpha}'(s))]^{1/2} \, \mathrm{d}s$$

Remark 7.15. Let $\alpha: I \longrightarrow S$ be a curve on a regular surface S and $x: U \longrightarrow S$ a local parametrization such that $\alpha(I) \subset x(U)$. Denote by $\beta = (u, v)$ the corresponding curve in the parameter domain (i.e., $\alpha(s) = x(\beta(s)) = x(u(s), v(s))$).

Let E, F, G be the coefficients of the first fundamental form w.r.t. the parametrization \boldsymbol{x} . Then the arc lengths of $\boldsymbol{\alpha}$ from $s_0 \in I$ to $s_1 \in I$ can be expressed in terms of E, F, G only as follows:

$$\ell(s_1) = \int_{s_0}^{s_1} [I_{\alpha(t)}(\alpha'(t))]^{1/2} \, \mathrm{d}t = \int_{s_0}^{s_1} \sqrt{u'(t)^2 E(\beta(t)) + 2u'(t)v'(t)F(\beta(t)) + v'(t)^2 G(\beta(t))} \, \mathrm{d}t.$$

Example 7.16. The hyperbolic plane. We construct a surface by fixing the coefficients of the first fundamental form E, F, G only. Actually, this is the first example which cannot (in total) be realized as a surface in \mathbb{R}^3 .

Let $U := \{ (u, v) \in \mathbb{R}^2 | v > 0 \}$ be the upper halfplane and set

$$E(u,v) := \frac{1}{v^2}, \quad F(u,v) := 0 \quad \text{and} \quad G(u,v) := \frac{1}{v^2},$$

i.e., F = 0 and E = G.

Let us now assume that there is a surface S in an ambient space \mathbb{R}^n and a parametrization $x: U \longrightarrow S$ such that the corresponding coefficients of the fundamental form have the desired form.

Consider a curve $\boldsymbol{\alpha} \colon (0,\infty) \longrightarrow S$ given by $\boldsymbol{\alpha}(s) = \boldsymbol{x}(0,s)$. In the coordinates on U, the curve has the form $\boldsymbol{\beta} \colon (0,\infty) \longrightarrow U, \, \boldsymbol{\beta}(s) = (0,s)$. Then

$$\|\boldsymbol{\alpha}'(s)\|^2 = 0E(0,s) + 0 + 1G(0,s) = \frac{1}{s^2}$$

Therefore, the arc length of $\boldsymbol{\alpha}$ from $\boldsymbol{\alpha}(a)$ to $\boldsymbol{\alpha}(b)$ on S is

$$\int_a^b \|\boldsymbol{\alpha}'(s)\| \,\mathrm{d}s = \int_a^b \frac{1}{s} \,\mathrm{d}s = \log b - \log a = \log \frac{b}{a}.$$

The upper half-plane $U = \mathbb{R} \times (0, \infty)$ together with the first fundamental form above is called the *upper half-plane model of the hyperbolic plane*. The corresponding surface S, the *hyperbolic plane*, is sometimes denoted by \mathbb{H} .

Remark. Coordinate curves and angle. Let $x: U \longrightarrow S$ be a parametrization of a regular surface $S \subset \mathbb{R}^n$, $(u_0, v_0) \in U$. Consider the curves

$$\alpha_1(s) = x(u_0 + s, v_0)$$
 and $\alpha_2(s) = x(u_0, v_0 + s)$

with s being small. These curves are called the *coordinate curves* of the parametrization x. The angle formed by the two curves meeting in (u_0, v_0) can be calculated by

$$\cos\vartheta = \frac{\boldsymbol{\alpha}_1'(0) \cdot \boldsymbol{\alpha}_2'(0)}{\|\boldsymbol{\alpha}_1'(0)\| \|\boldsymbol{\alpha}_2'(0)\|}.$$

But $\boldsymbol{\alpha}_1'(0) = \boldsymbol{x}_u(u_0, v_0)$ and $\boldsymbol{\alpha}_2'(0) = \boldsymbol{x}_v(u_0, v_0)$, so that (omitting the argument (u_0, v_0))

$$\cos\vartheta = \frac{\boldsymbol{x}_u \cdot \boldsymbol{x}_v}{\|\boldsymbol{x}_u\| \|\boldsymbol{x}_v\|} = \frac{F}{\sqrt{EG}}$$

7.4 Area of subsets of a surface

Definition 7.17. Let $R_0 \subset U$, $R = \boldsymbol{x}(R_0) \subset S$. The area of a region $R = \boldsymbol{x}(R_0)$ is defined as

$$\operatorname{area}(R) := \int_{R_0} \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v$$

Example 7.18. Let S be a half of a cylinder parametrized by

$$\boldsymbol{x}(u,v) = (u,v,\sqrt{1-v^2}), \qquad (u,v) \in U = (-1,1) \times (-1,1)$$

Then $E \equiv 1, F \equiv 0, G = 1/(1 - v^2)$, so

area(S) =
$$\int_U \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v = \int_{-1}^1 \, \mathrm{d}u \int_{-1}^1 \sqrt{1/(1 - v^2)} \, \mathrm{d}v = 2\pi$$

The definition of area depends at first sight on the local parametrization $x: U \longrightarrow S$. Actually, it does not:

Proposition 7.19. Assume that we have two local parametrizations $x_1: U_1 \longrightarrow S$ and $x_2: U_2 \longrightarrow S$ with $x_1(U_1) = x_2(U_2) =: W$. Denote by E_1, F_1, G_1 and E_2, F_2, G_2 the coefficients of the first fundamental form in the parametrisation x_1 and x_2 , respectively.

Let $R \subset W$. Denote by $R_1 := \boldsymbol{x}_1^{-1}(R)$ and $R_2 := \boldsymbol{x}_2^{-1}(R)$ the corresponding regions in the respective parameter domains. Then

$$\int_{R_1} \sqrt{E_1 G_1 - F_1^2} \, \mathrm{d}u_1 \, \mathrm{d}v_1 = \int_{R_2} \sqrt{E_2 G_2 - F_2^2} \, \mathrm{d}u_2 \, \mathrm{d}v_2.$$

Example 7.20.

(a) The sphere. Let S be the sphere of radius r > 0 in \mathbb{R}^3 ,

$$\boldsymbol{x}(u,v) = (r\cos u \sin v, r\sin u \sin v, r\cos v)$$

(v measures latitude, u measures longitude, and (u, v) are called spherical coordinates). We have

$$E(u, v) = r^2 \sin^2 v$$
, $F(u, v) = 0$ and $G(u, v) = r^2$,

so that $EG - F^2 = r^4 \sin^2 v$.

Let us compute the area of a "slice" of the sphere enclosed by planes $z = z_0$ and $z = z_1$, where $-r \le z_1 < z_0 \le r$. This corresponds to the domain $\arccos z_0 \le v \le \arccos z_1, u \in (0, 2\pi)$. Therefore the area is

$$\int_0^{2\pi} du \int_{\arccos z_0}^{\arccos z_1} r^2 \sin^2 v \, dv = 2\pi r^2 (z_0 - z_1).$$

(b) Torus of revolution: Consider the parametrization

$$\boldsymbol{x} \colon U := (0, 2\pi) \times (0, 2\pi) \longrightarrow S,$$
$$\boldsymbol{x}(u, v) := \left((R + r \cos v) \cos u, (R + r \cos v) \sin u, r \sin v \right)$$

for 0 < r < R. This surface is a surface of revolution, obtained by rotating the curve α given by

$$\boldsymbol{\alpha}(v) = \left((R + r\cos v), 0, r\sin v \right)$$

(which is a circle of radius r in the (x, z)-plane centered at the point (R, 0, 0)) around the z-axis. Then

$$\begin{aligned} \boldsymbol{x}_u(u,v) &= \left(-(R+r\cos v)\sin u, (R+r\cos v)\cos u, 0 \right), \\ \boldsymbol{x}_v(u,v) &= \left(-r\sin v\cos u, -r\sin v\sin u, r\cos v \right) \end{aligned}$$

and therefore

$$E(u, v) = (R + r \cos v)^2$$
, $F(u, v) = 0$ and $G(u, v) = r^2$.

In particular, $\sqrt{EG - F^2} = (R + r \cos v)r$, hence

area(S) =
$$\int_0^{2\pi} \int_0^{2\pi} (R + r \cos v) r \, \mathrm{d}u \, \mathrm{d}v = 4\pi^2 r R.$$

(c) **Hyperbolic plane:** Recall that we have the parameter domain $U := \mathbb{R} \times (0, \infty)$ together with the coefficients of the fundamental form

$$E(u, v) = G(u, v) = \frac{1}{v^2}, \quad F(u, v) = 0,$$

and $\sqrt{EG-F}(u,v) = 1/v^2$. Let $R_{a,b} := (0,b) \times (a,2a)$, then the corresponding region in the hyperbolic plane \mathbb{H} has area

area
$$(R) = \int_{R_{a,b}} \frac{1}{v^2} \, \mathrm{d}u \, \mathrm{d}v = \int_0^b \, \mathrm{d}u \int_a^{2a} \frac{1}{v^2} \, \mathrm{d}v = b/2a.$$

In particular, if b = a, we obtain 1/2 which does not depend on a.