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Differential Geometry III, Term 1 (Section 7)

7 Tangent plane, first fundamental form and area

7.1 The tangent plane

Definition 7.1. Let S be a regular surface and p ∈ S. A tangent vector to S at p is the tangent vector
α′(0) ∈ R3 of a smooth (not necessarily regular) curve α : (−ε, ε) −→ S ⊂ R3 with α(0) = p (for some
ε > 0).

Let x : U −→ S be a local parametrization of S, q ∈ U , x(q) = p. Recall that the differential (or
derivative) dqx is a linear map dqx : R2 → R3. By the definition of a regular surface, dqx has full rank
at every point, so the dimension of the image is equal to 2.

Definition 7.2. The plane dqx(R2) is called the tangent plane to S at p and is denoted by TpS.

Proposition 7.3. Let x : U −→ S be a local parametrization of a regular surface S with U ⊂ R2 open,
and let q ∈ U . Then Then the tangent plane TpS coincides with the set of all tangent vectors to S at p.

Remark 7.4. (a) Since the definition of a tangent vector does not depend on a parametrization,
Prop. 7.3 implies that the tangent plane does not depend on a parametrization either.

(b) If α(s) = x(u(s), v(s)) and w = α′(0), then w has coordinates (u′(0), v′(0)) with respect to the
basis {xu(q),xv(q)}.

Example 7.5.

(a) Tangent plane to graph of a function: Let g : U −→ R be a smooth function on an open subset
U of R2, i.e.

S := graph g =
{

(u, v, g(u, v))
∣∣ (u, v) ∈ U

}
is a regular surface with parametrisation x(u, v) := (u, v, g(u, v)). Then the tangent plane TpS to
S at p = (u, v, g(u, v)) is generated by

{xu(q),xv(q)} = {(1, 0, gu(u, v)), (0, 1, gv(u, v))},

where q = (u, v).

(b) Tangent plane to a level set of a function: Let f : R3 −→ R be a smooth function, and let
c ∈ R be a regular value of f (i.e., ∇f(p) 6= 0 for all p ∈ R3 with f(p) = c). We have seen that
S := f−1(c) is a regular surface.

Lemma 7.6. Let p ∈ S, then TpS is the plane in R3 orthogonal to ∇f(p).
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7.2 The first fundamental form

Let p ∈ S. We can consider the restriction of the inner product (·) : R3 × R3 −→ R, (v,w) 7→ v ·w, to
TpS ⊂ R3. We denote the restriction by 〈·, ·〉p, i.e.,

〈·, ·〉p : TpS × TpS −→ R, (w1,w2) 7→ w1 ·w2.

This map is

• bilinear, i.e, linear in both of its arguments;

• symmetric, i.e., 〈w2,w1〉p = 〈w1,w2〉p for all w1,w2 ∈ TpS;

• and positive, i.e., ‖w‖2p := 〈w,w〉 ≥ 0 and ‖w‖2p = 0 implies w = 0 for all w ∈ TpS.

We can now measure the length of a tangent vector w ∈ TpS and the angle between two tangent vectors
w1,w2 ∈ TpS by √

〈w,w〉p and cosϑ =
〈w1,w2〉p√

〈w1,w1〉p
√
〈w2,w2〉p

.

A quadratic form Ip is obtained from a bilinear form 〈·, ·〉p by setting Ip(w) := 〈w,w〉p.

Definition 7.7. The quadratic form Ip : TpS −→ R, Ip(w) := 〈w,w〉p = ‖w‖2 is called the first
fundamental form at p ∈ S.

Definition 7.8. The functions E,F,G : U −→ R defined by

E := 〈xu,xu〉p, F := 〈xu,xv〉p, G := 〈xv,xv〉p

are called the coefficients of the first fundamental form in the local parametrization x : U −→ S.

Note that the coefficients of the first fundamental form depend on the parametrisation x!

Remark 7.9. If (a, b) ∈ R2 are the coordinates of a vectorw ∈ TpS with respect to the basis {xu(q),xv(q)},
then

Ip(w) = a2E + 2abF + b2G =
(
a b

)
·
(
E F
F G

)
·
(
a
b

)
.

Since Ip is positive (Ip(w) = ‖w‖2 ≥ 0 and Ip(w) = 0 implies w = 0), we have

E > 0, G > 0 and det

(
E F
F G

)
= EG− F 2 > 0.

Example 7.10. Let S be a plane in R3 given by an equation ax+ by + cz + d = 0, and assume without
loos of generality that c 6= 0. Then

xx(x, y) = (1, 0,−a/c) and xy(x, y) = (0, 1,−b/c).

In particular, we have

E(x, y) = 1 +
a2

c2
, F (x, y) =

ab

c2
, G(x, y) = 1 +

b2

c2
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Example 7.11. Coefficients of the first fundamental form for a graph of a function: Let
a surface be given by a graph of a function g, namely x(u, v) := (u, v, g(u, v)) = (u, v, u2 + v2) for
(u, v) ∈ U := R2. Then

xu(u, v) = (1, 0, gu) = (1, 0, 2u) and xv(u, v) = (0, 1, gv) = (0, 1, 2v).

In particular, we have

E = (1, 0, gu) · (1, 0, gu) = 1 + g2u, here E(u, v) = 1 + 4u2,

F = (1, 0, gu) · (0, 1, gv) = gugv, here F (u, v) = 8uv,

G = (0, 1, gv) · (0, 1, gv) = 1 + g2v here G(u, v) = 1 + 4v2,

Example 7.12. Coefficients of the first fundamental form for a surface of revolution: Let S be
obtained by rotating the space curve given by α(v) = (f(v), 0, g(v)), v ∈ R, around the z-axis (without
self-intersections and without meeting the z-axis, i.e., f(v) = 0). A parametrization is then given by

x(u, v) = (f(v) cosu, f(v) sinu, g(v))

(u, v) ∈ (−π, π)× R. Here, we have

xu(u, v) = (−f(v) sinu, f(v) cosu, 0) and xv(u, v) = (f ′(v) cosu, f ′(v) sinu, g′(v)).

The coefficients of the first fundamental form in this parametrization are

E(u, v) = f(v)2, F (u, v) = 0 and G(u, v) = |f ′(v)|2 + |g′(v)|2 = ‖α′(v)‖2.

7.3 Arc lengths of a curve and angles between curves in a surface

The aim of the following remark is to calculate the arc length of a curve in a surface using only the
coefficients of the first fundamental form.

Definition 7.13. Let α : I −→ S be a curve on a regular surface S. Then the length of α, measured
from a point α(u0) for some u0 ∈ I, is

`(u) :=

∫ u

u0

√
〈α′(s),α′(s)〉α(s) ds.

Proposition 7.14 (evident).

`(u) :=

∫ u

u0

[Iα(s)(α
′(s))]1/2 ds.

Remark 7.15. Let α : I −→ S be a curve on a regular surface S and x : U −→ S a local parametrization
such that α(I) ⊂ x(U). Denote by β = (u, v) the corresponding curve in the parameter domain (i.e.,
α(s) = x(β(s)) = x(u(s), v(s))).

Let E,F,G be the coefficients of the first fundamental form w.r.t. the parametrization x. Then the
arc lengths of α from s0 ∈ I to s1 ∈ I can be expressed in terms of E,F,G only as follows:

`(s1) =

∫ s1

s0

[Iα(t)(α
′(t))]1/2 dt =

∫ s1

s0

√
u′(t)2E(β(t)) + 2u′(t)v′(t)F (β(t)) + v′(t)2G(β(t)) dt.
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Example 7.16. The hyperbolic plane. We construct a surface by fixing the coefficients of the first
fundamental form E,F,G only. Actually, this is the first example which cannot (in total) be realized as
a surface in R3.

Let U := { (u, v) ∈ R2 | v > 0 } be the upper halfplane and set

E(u, v) :=
1

v2
, F (u, v) := 0 and G(u, v) :=

1

v2
,

i.e., F = 0 and E = G.
Let us now assume that there is a surface S in an ambient space Rn and a parametrization x : U −→ S

such that the corresponding coefficients of the fundamental form have the desired form.
Consider a curve α : (0,∞) −→ S given by α(s) = x(0, s). In the coordinates on U , the curve has the

form β : (0,∞) −→ U , β(s) = (0, s). Then

‖α′(s)‖2 = 0E(0, s) + 0 + 1G(0, s) =
1

s2

Therefore, the arc length of α from α(a) to α(b) on S is∫ b

a
‖α′(s)‖ ds =

∫ b

a

1

s
ds = log b− log a = log

b

a
.

The upper half-plane U = R×(0,∞) together with the first fundamental form above is called the upper
half-plane model of the hyperbolic plane. The corresponding surface S, the hyperbolic plane, is sometimes
denoted by H.

Remark. Coordinate curves and angle. Let x : U −→ S be a parametrization of a regular surface
S ⊂ Rn, (u0, v0) ∈ U . Consider the curves

α1(s) = x(u0 + s, v0) and α2(s) = x(u0, v0 + s)

with s being small. These curves are called the coordinate curves of the parametrization x. The angle
formed by the two curves meeting in (u0, v0) can be calculated by

cosϑ =
α′1(0) ·α′2(0)

‖α′1(0)‖‖α′2(0)‖
.

But α′1(0) = xu(u0, v0) and α′2(0) = xv(u0, v0), so that (omitting the argument (u0, v0))

cosϑ =
xu · xv
‖xu‖‖xv‖

=
F√
EG

.

7.4 Area of subsets of a surface

Definition 7.17. Let R0 ⊂ U , R = x(R0) ⊂ S. The area of a region R = x(R0) is defined as

area(R) :=

∫
R0

√
EG− F 2 du dv.

Example 7.18. Let S be a half of a cylinder parametrized by

x(u, v) = (u, v,
√

1− v2), (u, v) ∈ U = (−1, 1)× (−1, 1)

Then E ≡ 1, F ≡ 0, G = 1/(1− v2), so

area(S) =

∫
U

√
EG− F 2 dudv =

∫ 1

−1
du

∫ 1

−1

√
1/(1− v2) dv = 2π
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The definition of area depends at first sight on the local parametrization x : U −→ S. Actually, it
does not:

Proposition 7.19. Assume that we have two local parametrizations x1 : U1 −→ S and x2 : U2 −→ S
with x1(U1) = x2(U2) =: W . Denote by E1, F1, G1 and E2, F2, G2 the coefficients of the first fundamental
form in the parametrisation x1 and x2, respectively.

Let R ⊂ W . Denote by R1 := x−11 (R) and R2 := x−12 (R) the corresponding regions in the respective
parameter domains. Then∫

R1

√
E1G1 − F 2

1 du1 dv1 =

∫
R2

√
E2G2 − F 2

2 du2 dv2.

Example 7.20.

(a) The sphere. Let S be the sphere of radius r > 0 in R3,

x(u, v) = (r cosu sin v, r sinu sin v, r cos v)

(v measures latitude, u measures longitude, and (u, v) are called spherical coordinates). We have

E(u, v) = r2 sin2 v, F (u, v) = 0 and G(u, v) = r2,

so that EG− F 2 = r4 sin2 v.

Let us compute the area of a “slice” of the sphere enclosed by planes z = z0 and z = z1, where
−r ≤ z1 < z0 ≤ r. This corresponds to the domain arccos z0 ≤ v ≤ arccos z1, u ∈ (0, 2π). Therefore
the area is ∫ 2π

0
du

∫ arccos z1

arccos z0

r2 sin2 v dv = 2πr2(z0 − z1).

(b) Torus of revolution: Consider the parametrization

x : U := (0, 2π)× (0, 2π) −→ S,

x(u, v) :=
(
(R+ r cos v) cosu, (R+ r cos v) sinu, r sin v

)
for 0 < r < R. This surface is a surface of revolution, obtained by rotating the curve α given by

α(v) =
(
(R+ r cos v), 0, r sin v

)
(which is a circle of radius r in the (x, z)-plane centered at the point (R, 0, 0)) around the z-axis.

Then

xu(u, v) =
(
−(R+ r cos v) sinu, (R+ r cos v) cosu, 0

)
,

xv(u, v) =
(
−r sin v cosu,−r sin v sinu, r cos v

)
and therefore

E(u, v) = (R+ r cos v)2, F (u, v) = 0 and G(u, v) = r2.

In particular,
√
EG− F 2 = (R+ r cos v)r, hence

area(S) =

∫ 2π

0

∫ 2π

0
(R+ r cos v)r dudv = 4π2rR.

5



(c) Hyperbolic plane: Recall that we have the parameter domain U := R× (0,∞) together with the
coefficients of the fundamental form

E(u, v) = G(u, v) =
1

v2
, F (u, v) = 0,

and
√
EG− F (u, v) = 1/v2. Let Ra,b := (0, b) × (a, 2a), then the corresponding region in the

hyperbolic plane H has area

area(R) =

∫
Ra,b

1

v2
dudv =

∫ b

0
du

∫ 2a

a

1

v2
dv = b/2a.

In particular, if b = a, we obtain 1/2 which does not depend on a.
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