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Differential Geometry III, Term 2 (Section 10)

10 The Theorema Egregium of Gauss

“Theorema Egregium” means “Remarkable Theorem”.

Theorem 10.1 (Theorema Egregium). The Gauss curvature of a surface in R3 depends on E,F,G and
their derivatives only (in a local parametrization).

In other words: the Gauss curvature is intrinsic.

Corollary 10.2. A local isometry preserves the Gauss curvature.

The converse is false: a map preserving the Gauss curvature is not necessarily a (local) isometry, see
Remark 10.11.

Remark 10.3. Theorem 10.1 does not hold for the mean curvature: e.g. H = 0 (plane) but H = 1/(2r)
(cylinder), although the plane and the cylinder are locally isometric.

Definition 10.4 (Christoffel symbols). Let x : U −→ S be a local parametrization of a surface S in R3.
The Christoffel symbols Γk

ij (i, j, k ∈ {1, 2}) are functions Γk
ij : U −→ R defined by

xuu = Γ1
11xu + Γ2

11xv + LN

xuv = Γ1
12xu + Γ2

12xv +MN

xvu = Γ1
21xu + Γ2

21xv +MN

xvv = Γ1
22xu + Γ2

22xv +NN

In particular, Γk
ij = Γk

ji.

Lemma 10.5.

(a) We have the identities

xuu · xu =
1

2
Eu

xuv · xu =
1

2
Ev

xvv · xu = Fv −
1

2
Gu

xvv · xv =
1

2
Gv

xuv · xv =
1

2
Gu

xuu · xv = Fu −
1

2
Ev

for the coefficients E, F and G of the first fundamental form with respect to a parametrization x.

(b) The Christoffel symbols are uniquely determined by E, F , G and their first derivatives.

Corollary 10.6. Gauss’ Theorema Egregium allows us to define the Gauss curvature for any surface S
just using the first fundamental form.
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Example 10.7 (Gauss curvature of the hyperbolic plane). Recall that we define the hyperbolic plane as
a surface H parametrized by x : U −→ H with

U = R× (0,∞), E(u, v) = G(u, v) =
1

v2
, F (u, v) = 0.

Step 1 — Christoffel symbols: We first calculate the Christoffel symbols in the case that F = 0 (you can
read off Γk

ij directly):{
EΓ1

11 = 1
2Eu

GΓ2
11 = −1

2Ev

{
EΓ1

12 = 1
2Ev

GΓ2
12 = 1

2Gu

{
EΓ1

22 = −1
2Gu

GΓ2
22 = 1

2Gv

or in our case (E and G are functions of v only).{
1
v2

Γ1
11 = 0

1
v2

Γ2
11 = 1

v3

{
1
v2

Γ1
12 = − 1

v3

1
v2

Γ2
12 = 0

{
1
v2

Γ1
22 = 0

1
v2

Γ2
22 = − 1

v3

or {
Γ1
11 = 0

Γ2
11 = 1

v

{
Γ1
12 = − 1

v

Γ2
12 = 0

{
Γ1
22 = 0

Γ2
22 = − 1

v .

Therefore,

xuu = Γ1
11xu + Γ2

11xv + LN =
1

v
xv + LN

xuv = Γ1
12xu + Γ2

12xv +MN = −1

v
xu +MN

xvv = Γ1
22xu + Γ2

22xv +NN = −1

v
xv +NN

Step 2 — Calculate LN −M2:

LN −M2 = LN ·NN −MN ·MN

= (xuu −
1

v
xv) · (xvv +

1

v
xv)− (xuv +

1

v
xu) · (xuv +

1

v
xu)

= xuu · xvv − xuv · xuv − 1

v
xvv · xv︸ ︷︷ ︸

=Gv/2=−1/v3

+
1

v
xuu · xv︸ ︷︷ ︸

=Fu−Ev/2=1/v3

− 1

v2
xv · xv︸ ︷︷ ︸
=G=1/v2

− 2
1

v
xuv · xu︸ ︷︷ ︸

=Ev/2=−1/v3

− 1

v2
xu · xu︸ ︷︷ ︸
=E=1/v2

= xuu · xvv − xuv · xuv +
2

v4
.

We now have

xuu · xvv − xuv · xuv = (xu · xvv)u − (xu · xuv)v

= (Fv −
1

2
Gu)u −

1

2
Evv = − ∂2

∂v2
1

2v2
= − 3

v4
.

Step 3 — Calculate K: Since EG− F 2 = 1/v4, we have finally

K =
LN −M2

EG− F 2
=
−3/v4 + 2/v4

1/v4
= −1.

As a result, we have: the hyperbolic plane has constant curvature −1.
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Remark 10.8.

(a) In Example 10.7 (or more generally, in all examples where we calculate the Gauss curvature from
E, F and G only) we used the fact that S ⊂ R3 (at least locally), because we used the formulae for
xuu etc. involving the normal vector N . This is for convenience only, to remember the procedure.
More precisely, we should use the formula

K =
(LN −M2

EG− F 2
=
)Evv/2 + Fuv − Evv/2 + terms in E,F ,G and derivatives

EG− F 2

as the definition of K for a general surface as we did in Theorem 10.1.

(b) Recall that for plane curves the signed curvature defined a curve up to an isometry of the plane.
What about a similar result for surfaces? Does the Gauss curvature define a surface uniquely (or
up to what data the surface is unique)?

The answer to the uniqueness is negative, as Remark 10.11 shows: there exist surfaces S, S̃ and a
diffeomorphism f : S −→ S̃ (f is bijective, smooth and f−1 is also smooth) which is not an isometry,
but for which the Gauss curvature is preserved (i.e., K(p) = K̃(f(p)), if K resp. K̃ is the Gauss
curvature of S resp. S̃).

Example 10.9. (Gauss curvature in an orthogonal parametrization).
In an orthogonal parametrization (F = 0) we have

K = − 1

2
√
EG

(( Ev√
EG

)
v

+
( Gu√

EG

)
u

)
Example 10.10. (Flat torus in R4).

Let T = S1 × S1 ⊂ R4 be the so-called flat torus. We have a standard parametrization

x(u, v) = (cosu, sinu, cos v, sin v), (u, v) ∈ U

with U = (0, 2π)× (0, 2π) (and other suitable sets to cover all of S).
We have

xu = (− sinu, cosu, 0, 0) and xv = (0, 0,− sin v, cos v),

so that E = G = 1 and F = 0.
Therefore the Gauss curvature is

K = − 1

2
√
EG

(( Ev√
EG

)
v

+
( Gu√

EG

)
u

)
= 0.

Example 10.11. (Surfaces with the same Gauss curvature are not necessarily isometric).
Let U = (0, 2π) × (0,∞) and let S, S̃ be the surfaces defined by S = x(U), S̃ = y(U), where

x,y : U −→ R3 are defined by

x(u, v) = (v cosu, v sinu, u), y(u, v) = (v cosu, v sinu, log v), (u, v) ∈ U.

(thus S is an open subset of the helicoid and S̃ is an open subset of a surface of revolution).
The coefficients of the first fundamental forms of S resp. S̃ w.r.t. x resp. y are

E = v2 + 1, F = 0, G = 1 and Ẽ = v2, F̃ = 0, G̃ = 1 +
1

v2
.
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Calculating the Gauss curvature for S and S̃ gives

K(x(u, v)) = K̃(y(u, v)) = − 1

(v2 + 1)2
,

and hence K(p) = K̃(f(p)).
Since the coefficients of the first fundamental form S and S̃ are different, f cannot be a local isometry

(note that f ◦ x = y, so that (f ◦ x)u · (f ◦ x)u = yu · yu = Ẽ etc.), so since E 6= Ẽ, f cannot be an
isometry by Proposition 8.15.
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