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Differential Geometry III, Term 2 (Section 10)

10 The Theorema Egregium of Gauss

“Theorema Egregium” means “Remarkable Theorem”.

Theorem 10.1 (Theorema Egregium). The Gauss curvature of a surface in R* depends on E, F, G and
their derivatives only (in a local parametrization).

In other words: the Gauss curvature is intrinsic.
Corollary 10.2. A local isometry preserves the Gauss curvature.

The converse is false: a map preserving the Gauss curvature is not necessarily a (local) isometry, see
Remark 10.11.

Remark 10.3. Theorem 10.1 does not hold for the mean curvature: e.g. H = 0 (plane) but H = 1/(2r)
(cylinder), although the plane and the cylinder are locally isometric.

Definition 10.4 (Christoffel symbols). Let «: U — S be a local parametrization of a surface S in R3.
The Christoffel symbols Ffj (1,7, k € {1,2}) are functions Ffj: U — R defined by

Tyy =11 2y + T3, + LN
Ty = Doy + Tz, + MN
Ty =Ty + 152, + MIN
Xy = Dooxy + T2, + NN
In particular, Ffj = Ffl
Lemma 10.5.

(a) We have the identities

1 1
Lyy * Ly = §Eu Lyy * Ly = in
1 1
Lyy * Ly = §Ev Lyw * Ly = iGu
1 1
mvv'mu:Fv_§Gu muu'mv:Fu_§Ev

for the coefficients E, F' and G of the first fundamental form with respect to a parametrization x.
(b) The Christoffel symbols are uniquely determined by E, F', G and their first derivatives.

Corollary 10.6. Gauss’ Theorema Egregium allows us to define the Gauss curvature for any surface S
just using the first fundamental form.



Example 10.7 (Gauss curvature of the hyperbolic plane). Recall that we define the hyperbolic plane as
a surface H parametrized by : U — H with
1
U =R x (0,00), E(u,v) = G(u,v) = —, F(u,v) =0.
v
Step 1 — Christoffel symbols: We first calculate the Christoffel symbols in the case that F' = 0 (you can
read off Ffj directly):

ET}, =3iE, ET}, =1iE, ET}, =-1G,
GI?, =-—3E, GIi, =14Gy GI3, =1iG,
or in our case (E and G are functions of v only).
U%Fh =0 %2”2 :_7%3 vizréz =0
U%F%l :1%3 U%F%Q =0 1%21%2 :—U%
or
{Fh =0 {F%z = _% {P%Q =0
=3 rf, =0 I3 =—3
Therefore,

1
Ty =Ty + T3z, + LN = @y, + LN
1
Ty =hx, + Tz, + MN = —@+ MN
1
Ly = F%Qmu + F%va + NN = —;:cv + NN

Step 2 — Calculate LN — M?:

LN -M?>?=LN-NN —-MN -MN

1 1 1 1
= (wuu - 5$v) : (mvv + Emv) - (mu'u + ;wu) : (muv + Emu)

= Tyy * Lyy — Lyv * Luw - Lyy * Ly +— Ly * Ly ) Ly * Ly
v ——" v N—— Ve S——~
=Gy /2=—1/v3 =Fy,—E,/2=1/v3 =G=1/v?
1 1
—2- Loyp * Ly, ) Ly, * Ly
v ~—— Ve N——
=E,/2=-1/v3 =E=1/v?
2
= LTyy * Lyy — Lyv * Lyw +¥

‘We now have

Lyy - Loy — Lyy * Ly = (mu . mvv)u - (wu : mu'v)v

1 1 >’ 1 3
= (=g = 5B = "5m5,8 = r
Step 8 — Calculate K: Since EG — F? = 1/v*, we have finally

K- LN —M?*  =3/v*+2/v*
- EG-F? 1/v4 N

As a result, we have: the hyperbolic plane has constant curvature —1.

—1.




Remark 10.8.

(a) In Example 10.7 (or more generally, in all examples where we calculate the Gauss curvature from
E, F and G only) we used the fact that S C R3 (at least locally), because we used the formulae for
., etc. involving the normal vector IN. This is for convenience only, to remember the procedure.
More precisely, we should use the formula

K- (LN — M? :) Ey/2+ Fuy — Eyy /2 + terms in E,F,G and derivatives
EG — F? EG — F2

as the definition of K for a general surface as we did in Theorem 10.1.

(b) Recall that for plane curves the signed curvature defined a curve up to an isometry of the plane.
What about a similar result for surfaces? Does the Gauss curvature define a surface uniquely (or
up to what data the surface is unique)?

The answer to the uniqueness is negative, as Remark 10.11 shows: there exist surfaces S, S and a
diffeomorphism f: S — S (f is bijective, smooth and f~1! is also smooth) which is not an isometry,
but for which the Gauss curvature is preserved (i.c., K(p) = K(f(p)), if K resp. K is the Gauss
curvature of S resp. S).

Example 10.9. (Gauss curvature in an orthogonal parametrization).
In an orthogonal parametrization (F' = 0) we have

K= ((73). * (729).)
2V EG EG/v EG/wu
Example 10.10. (Flat torus in R?).
Let T = S' x S C R* be the so-called flat torus. We have a standard parametrization

x(u,v) = (cosu,sinu, cos v, sinv), (u,v) €U

with U = (0,27) x (0,27) (and other suitable sets to cover all of 5).
We have
x, = (—sinu,cosu,0,0) and x, = (0,0, —sinv, cosv),

sothat F =G =1and F =0.

Therefore the Gauss curvature is

-5 ((75a).* (7)) -
2V EG EG/v EG/u
Example 10.11. (Surfaces with the same Gauss curvature are not necessarily isometric).

Let U = (0,27) x (0,00) and let S, S be the surfaces defined by S = x(U), S = y(U), where
x,y: U — R? are defined by

x(u,v) = (vcosu,vsinu,u), Y(u,v) = (vcosu,vsinu,logv), (u,v) € U.

(thus S is an open subset of the helicoid and S is an open subset of a surface of revolution).
The coefficients of the first fundamental forms of S resp. S w.r.t. @ resp. y are

E=v*+1, F=0, G=1 and E=1> F=0, G=1+—.



Calculating the Gauss curvature for .S and S gives

K(a(u.)) = Ku(wv) =~

and hence K (p) = K(f(p)).

Since the coefficients of the first fundamental form S and S are different, f cannot be a local isometry
(note that fox =y, so that (fox), - (fox)y = Yy yu = E etc.), so since E # E, f cannot be an
isometry by Proposition 8.15.



