Differential Geometry III, Term 2 (Section 10)

10 The Theorema Egregium of Gauss

"Theorema Egregium" means "Remarkable Theorem".
Theorem 10.1 (Theorema Egregium). The Gauss curvature of a surface in \mathbb{R}^{3} depends on E, F, G and their derivatives only (in a local parametrization).

In other words: the Gauss curvature is intrinsic.
Corollary 10.2. A local isometry preserves the Gauss curvature.
The converse is false: a map preserving the Gauss curvature is not necessarily a (local) isometry, see Remark 10.11.

Remark 10.3. Theorem 10.1 does not hold for the mean curvature: e.g. $H=0$ (plane) but $H=1 /(2 r)$ (cylinder), although the plane and the cylinder are locally isometric.

Definition 10.4 (Christoffel symbols). Let $\boldsymbol{x}: U \longrightarrow S$ be a local parametrization of a surface S in \mathbb{R}^{3}. The Christoffel symbols $\Gamma_{i j}^{k}(i, j, k \in\{1,2\})$ are functions $\Gamma_{i j}^{k}: U \longrightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\boldsymbol{x}_{u u} & =\Gamma_{11}^{1} \boldsymbol{x}_{u}+\Gamma_{11}^{2} \boldsymbol{x}_{v}+L \boldsymbol{N} \\
\boldsymbol{x}_{u v} & =\Gamma_{12}^{1} \boldsymbol{x}_{u}+\Gamma_{12}^{2} \boldsymbol{x}_{v}+M \boldsymbol{N} \\
\boldsymbol{x}_{v u} & =\Gamma_{21}^{1} \boldsymbol{x}_{u}+\Gamma_{21}^{2} \boldsymbol{x}_{v}+M \boldsymbol{N} \\
\boldsymbol{x}_{v v} & =\Gamma_{22}^{1} \boldsymbol{x}_{u}+\Gamma_{22}^{2} \boldsymbol{x}_{v}+N \boldsymbol{N}
\end{aligned}
$$

In particular, $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.

Lemma 10.5.

(a) We have the identities

$$
\begin{array}{ll}
\boldsymbol{x}_{u u} \cdot \boldsymbol{x}_{u}=\frac{1}{2} E_{u} & \boldsymbol{x}_{v v} \cdot \boldsymbol{x}_{v}=\frac{1}{2} G_{v} \\
\boldsymbol{x}_{u v} \cdot \boldsymbol{x}_{u}=\frac{1}{2} E_{v} & \boldsymbol{x}_{u v} \cdot \boldsymbol{x}_{v}=\frac{1}{2} G_{u} \\
\boldsymbol{x}_{v v} \cdot \boldsymbol{x}_{u}=F_{v}-\frac{1}{2} G_{u} & \boldsymbol{x}_{u u} \cdot \boldsymbol{x}_{v}=F_{u}-\frac{1}{2} E_{v}
\end{array}
$$

for the coefficients E, F and G of the first fundamental form with respect to a parametrization \boldsymbol{x}.
(b) The Christoffel symbols are uniquely determined by E, F, G and their first derivatives.

Corollary 10.6. Gauss' Theorema Egregium allows us to define the Gauss curvature for any surface S just using the first fundamental form.

Example 10.7 (Gauss curvature of the hyperbolic plane). Recall that we define the hyperbolic plane as a surface \mathbb{H} parametrized by $x: U \longrightarrow H$ with

$$
U=\mathbb{R} \times(0, \infty), \quad E(u, v)=G(u, v)=\frac{1}{v^{2}}, \quad F(u, v)=0 .
$$

Step 1 - Christoffel symbols: We first calculate the Christoffel symbols in the case that $F=0$ (you can read off $\Gamma_{i j}^{k}$ directly):

$$
\left\{\begin{array} { l }
{ E \Gamma _ { 1 1 } ^ { 1 } = \frac { 1 } { 2 } E _ { u } } \\
{ G \Gamma _ { 1 1 } ^ { 2 } = - \frac { 1 } { 2 } E _ { v } }
\end{array} \quad \left\{\begin{array} { l }
{ E \Gamma _ { 1 2 } ^ { 1 } = \frac { 1 } { 2 } E _ { v } } \\
{ G \Gamma _ { 1 2 } ^ { 2 } = \frac { 1 } { 2 } G _ { u } }
\end{array} \quad \left\{\begin{array}{l}
E \Gamma_{22}^{1}=-\frac{1}{2} G_{u} \\
G \Gamma_{22}^{2}=\frac{1}{2} G_{v}
\end{array}\right.\right.\right.
$$

or in our case (E and G are functions of v only).

$$
\left\{\begin{array} { l }
{ \frac { 1 } { v ^ { 2 } } \Gamma _ { 1 1 } ^ { 1 } = 0 } \\
{ \frac { 1 } { v ^ { 2 } } \Gamma _ { 1 1 } ^ { 2 } = \frac { 1 } { v ^ { 3 } } }
\end{array} \quad \left\{\begin{array} { l l }
{ \frac { 1 } { v ^ { 2 } } \Gamma _ { 1 2 } ^ { 1 } } & { = - \frac { 1 } { v ^ { 3 } } } \\
{ \frac { 1 } { v ^ { 2 } } \Gamma _ { 1 2 } ^ { 2 } } & { = 0 }
\end{array} \quad \left\{\begin{array}{l}
\frac{1}{v^{2}} \Gamma_{22}^{1}=0 \\
\frac{1}{v^{2}} \Gamma_{22}^{2}=-\frac{1}{v^{3}}
\end{array}\right.\right.\right.
$$

or

$$
\left\{\begin{array} { l }
{ \Gamma _ { 1 1 } ^ { 1 } = 0 } \\
{ \Gamma _ { 1 1 } ^ { 2 } = \frac { 1 } { v } }
\end{array} \quad \left\{\begin{array} { l l }
{ \Gamma _ { 1 2 } ^ { 1 } } & { = - \frac { 1 } { v } } \\
{ \Gamma _ { 1 2 } ^ { 2 } } & { = 0 }
\end{array} \quad \left\{\begin{array}{ll}
\Gamma_{22}^{1} & =0 \\
\Gamma_{22}^{2} & =-\frac{1}{v}
\end{array}\right.\right.\right.
$$

Therefore,

$$
\begin{aligned}
& \boldsymbol{x}_{u u}=\Gamma_{11}^{1} \boldsymbol{x}_{u}+\Gamma_{11}^{2} \boldsymbol{x}_{v}+L \boldsymbol{N}=\frac{1}{v} \boldsymbol{x}_{v}+L \boldsymbol{N} \\
& \boldsymbol{x}_{u v}=\Gamma_{12}^{1} \boldsymbol{x}_{u}+\Gamma_{12}^{2} \boldsymbol{x}_{v}+M \boldsymbol{N}=-\frac{1}{v} \boldsymbol{x}_{u}+M \boldsymbol{N} \\
& \boldsymbol{x}_{v v}=\Gamma_{22}^{1} \boldsymbol{x}_{u}+\Gamma_{22}^{2} \boldsymbol{x}_{v}+N \boldsymbol{N}=-\frac{1}{v} \boldsymbol{x}_{v}+N \boldsymbol{N}
\end{aligned}
$$

Step $2-$ Calculate $L N-M^{2}$:

$$
\begin{aligned}
L N-M^{2} & =L \boldsymbol{N} \cdot N \boldsymbol{N}-M \boldsymbol{N} \cdot M \boldsymbol{N} \\
& =\left(\boldsymbol{x}_{u u}-\frac{1}{v} \boldsymbol{x}_{v}\right) \cdot\left(\boldsymbol{x}_{v v}+\frac{1}{v} \boldsymbol{x}_{v}\right)-\left(\boldsymbol{x}_{u v}+\frac{1}{v} \boldsymbol{x}_{u}\right) \cdot\left(\boldsymbol{x}_{u v}+\frac{1}{v} \boldsymbol{x}_{u}\right) \\
= & \boldsymbol{x}_{u u} \cdot \boldsymbol{x}_{v v}-\boldsymbol{x}_{u v} \cdot \boldsymbol{x}_{u v} \quad-\frac{1}{v} \underbrace{\boldsymbol{x}_{v v} \cdot \boldsymbol{x}_{v}}_{=G_{v} / 2=-1 / v^{3}}+\frac{1}{v} \underbrace{\boldsymbol{x}_{u u} \cdot \boldsymbol{x}_{v}}_{=F_{u}-E_{v} / 2=1 / v^{3}}-\frac{1}{v^{2}} \underbrace{\boldsymbol{x}_{v} \cdot \boldsymbol{x}_{v}}_{=G=1 / v^{2}} \\
& \quad-2 \frac{1}{v} \underbrace{\boldsymbol{x}_{u v} \cdot \boldsymbol{x}_{u}}_{=E_{v} / 2=-1 / v^{3}}-\frac{1}{v^{2}} \underbrace{\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{u}}_{=E=1 / v^{2}} \\
= & \boldsymbol{x}_{u u} \cdot \boldsymbol{x}_{v v}-\boldsymbol{x}_{u v} \cdot \boldsymbol{x}_{u v} \quad+\frac{2}{v^{4}} .
\end{aligned}
$$

We now have

$$
\begin{aligned}
\boldsymbol{x}_{u u} \cdot \boldsymbol{x}_{v v}-\boldsymbol{x}_{u v} \cdot \boldsymbol{x}_{u v} & =\left(\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{v v}\right)_{u}-\left(\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{u v}\right)_{v} \\
& =\left(F_{v}-\frac{1}{2} G_{u}\right)_{u}-\frac{1}{2} E_{v v}=-\frac{\partial^{2}}{\partial v^{2}} \frac{1}{2 v^{2}}=-\frac{3}{v^{4}} .
\end{aligned}
$$

Step 3 - Calculate K : Since $E G-F^{2}=1 / v^{4}$, we have finally

$$
K=\frac{L N-M^{2}}{E G-F^{2}}=\frac{-3 / v^{4}+2 / v^{4}}{1 / v^{4}}=-1 .
$$

As a result, we have: the hyperbolic plane has constant curvature -1 .

Remark 10.8.

(a) In Example 10.7 (or more generally, in all examples where we calculate the Gauss curvature from E, F and G only) we used the fact that $S \subset \mathbb{R}^{3}$ (at least locally), because we used the formulae for $\boldsymbol{x}_{u u}$ etc. involving the normal vector \boldsymbol{N}. This is for convenience only, to remember the procedure. More precisely, we should use the formula

$$
K=\left(\frac{L N-M^{2}}{E G-F^{2}}=\right) \frac{E_{v v} / 2+F_{u v}-E_{v v} / 2+\text { terms in } E, F, G \text { and derivatives }}{E G-F^{2}}
$$

as the definition of K for a general surface as we did in Theorem 10.1.
(b) Recall that for plane curves the signed curvature defined a curve up to an isometry of the plane. What about a similar result for surfaces? Does the Gauss curvature define a surface uniquely (or up to what data the surface is unique)?
The answer to the uniqueness is negative, as Remark 10.11 shows: there exist surfaces S, \widetilde{S} and a diffeomorphism $f: S \longrightarrow \widetilde{S}$ (f is bijective, smooth and f^{-1} is also smooth) which is not an isometry, but for which the Gauss curvature is preserved (i.e., $K(p)=\widetilde{K}(f(p))$, if K resp. \widetilde{K} is the Gauss curvature of S resp. \widetilde{S}).

Example 10.9. (Gauss curvature in an orthogonal parametrization).
In an orthogonal parametrization $(F=0)$ we have

$$
K=-\frac{1}{2 \sqrt{E G}}\left(\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}\right)
$$

Example 10.10. (Flat torus in \mathbb{R}^{4}).
Let $T=S^{1} \times S^{1} \subset \mathbb{R}^{4}$ be the so-called flat torus. We have a standard parametrization

$$
\boldsymbol{x}(u, v)=(\cos u, \sin u, \cos v, \sin v), \quad(u, v) \in U
$$

with $U=(0,2 \pi) \times(0,2 \pi)$ (and other suitable sets to cover all of S).
We have

$$
\boldsymbol{x}_{u}=(-\sin u, \cos u, 0,0) \quad \text { and } \quad \boldsymbol{x}_{v}=(0,0,-\sin v, \cos v)
$$

so that $E=G=1$ and $F=0$.
Therefore the Gauss curvature is

$$
K=-\frac{1}{2 \sqrt{E G}}\left(\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}\right)=0
$$

Example 10.11. (Surfaces with the same Gauss curvature are not necessarily isometric).
Let $U=(0,2 \pi) \times(0, \infty)$ and let S, \widetilde{S} be the surfaces defined by $S=\boldsymbol{x}(U), \widetilde{S}=\boldsymbol{y}(U)$, where $\boldsymbol{x}, \boldsymbol{y}: U \longrightarrow \mathbb{R}^{3}$ are defined by

$$
\boldsymbol{x}(u, v)=(v \cos u, v \sin u, u), \quad \boldsymbol{y}(u, v)=(v \cos u, v \sin u, \log v), \quad(u, v) \in U
$$

(thus S is an open subset of the helicoid and \widetilde{S} is an open subset of a surface of revolution).
The coefficients of the first fundamental forms of S resp. \widetilde{S} w.r.t. \boldsymbol{x} resp. \boldsymbol{y} are

$$
E=v^{2}+1, \quad F=0, \quad G=1 \quad \text { and } \quad \widetilde{E}=v^{2}, \quad \widetilde{F}=0, \quad \widetilde{G}=1+\frac{1}{v^{2}}
$$

Calculating the Gauss curvature for S and \widetilde{S} gives

$$
K(\boldsymbol{x}(u, v))=\widetilde{K}(\boldsymbol{y}(u, v))=-\frac{1}{\left(v^{2}+1\right)^{2}},
$$

and hence $K(p)=\widetilde{K}(f(p))$.
Since the coefficients of the first fundamental form S and \widetilde{S} are different, f cannot be a local isometry (note that $f \circ \boldsymbol{x}=\boldsymbol{y}$, so that $(f \circ \boldsymbol{x})_{u} \cdot(f \circ \boldsymbol{x})_{u}=\boldsymbol{y}_{u} \cdot \boldsymbol{y}_{u}=\widetilde{E}$ etc.), so since $E \neq \widetilde{E}, f$ cannot be an isometry by Proposition 8.15.

