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Differential Geometry III, Term 2 (Section 12)

12 Geodesics

Definition 12.1. Let α : I −→ S be a (regular) curve on a surface S ⊂ R3. α is called geodesic if α′′ is
normal to S (i.e., α′′(s) is orthogonal to Tα(s)S for all s ∈ I).

Note that the curve does not need to be parametrized by arc length, but we have:

Proposition 12.2 (Geodesics have constant speed). Let α be a geodesic, then ‖α′‖ is constant, i.e.,
there exists c > 0 such that α′(s) = c for all s ∈ I.

In other words, a geodesic is always parametrized proportionally to arc length.

Example 12.3.

(a) Lines are geodesics.

Let S be a surface and α be a line in S. Then α′′(s) = 0, hence α′′ is normal to any vector (in
particular to the tangent plane Tα(s)S). Therefore, α is a geodesic.

(b) Geodesics on a cylinder.

Let S = { (x, y, z) |x2 + y2 = 1 }, then any geodesic α on S is parametrized by

α(s) = (cos(as+ b), sin(as+ b), λs+ µ)

for some λ, µ, a, b ∈ R. If a = 0 then α is a meridian, if λ = 0 then α is a parallel.

(c) Great circles on a sphere are geodesics.

A great circle on a sphere is the curve given by the intersection of the sphere with a plane through
its origin.

Let S = { (x, y, z) |x2 + y2 + z2 = 1 }, and let v,w be orthonormal in R3. Set

α(s) = (cos s)v + (sin s)w

for s ∈ I (I some interval). Then α′′(s) = −α(s) = −N(α(s)), hence α is orthogonal to Tα(s)S
and α is a geodesic.

Proposition 12.4 (Equivalent characterization of geodesics). The following are equivalent (TFAE):

(a) α is a geodesic;

(b) α has constant speed and its geodesic curvature vanishes.

Proposition 12.5 (Geodesics in a local parametrization). Let α : I −→ S be a curve on a surface
S ⊂ R3, and let x : U −→ S be a local parametrization. We write α(s) = x(u(s), v(s)) and E,F,G for
the coefficients of the first fundamental form w.r.t. x. Then the following are equivalent:
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(a) α is a geodesic;

(b) α′′ · xu = 0 and α′′ · xv = 0;

(c)

u′′E +
1

2
(u′)2Eu + u′v′Ev + (v′)2

(
Fv −

1

2
Gu

)
+ v′′F = 0,

v′′G+
1

2
(v′)2Gv + u′v′Gu + (u′)2

(
Fu −

1

2
Ev

)
+ u′′F = 0.

Let us now state the main theorem about geodesics:

Theorem 12.6 (Local existence and uniqueness of geodesics). (a) Let p ∈ S, w ∈ TpS \ {0}. Then
there exists ε > 0 and a unique geodesic α : (−ε, ε) −→ S such that α(0) = p and α′(0) = w.

(b) Geodesics are determined entirely by the coefficients of the first fundamental form E, F and G (and
their derivatives) in a local parametrization.

Corollary 12.7 (Isometries take geodesics to geodesics). Let f : S −→ S̃ be a local isometry between
two surfaces S and S̃, and let α : I −→ S be a geodesic on S. Then f ◦α : I −→ S̃ is also a geodesic on
S̃.

Example 12.8.

(a) Plane.

We know that E = G = 1 and F = 0 (in the standard parametrization (u, v) ∈ R2), so the local
equation for a geodesic is

u′′ = 0 and v′′ = 0

This means that
u(s) = u0 + as and v(s) = v0 + bs

for some numbers u0, v0, a, b ((u0, v0) is the starting point and w = (a, b) is the initial speed vector).
These are all geodesics on a plane

(b) Cylinder.

Let S := { (x, y, z) |x2+y2 = 1 } be a cylinder and f : R2 −→ S be given by f(u, v) = (cosu, sinu, v),
then f is a local isometry. Geodesics on the cylinder S are just images of lines under f :

• lines s 7→ (cosu0, sinu0, s) (u0 some constant): image of the line s 7→ (u0, s);

• circles s 7→ (cos s, sin s, v0) (v0 some constant): image of the line s 7→ (s, v0);

• helices s 7→ (cos s, sin s, v0 + as) (v0, a some constants): image of the line s 7→ (s, v0 + as) (the
circles above are the case a = 0)

These are all geodesics (use the local uniqueness result of Theorem 12.6), cf. Example 12.3.

Remark 12.9 (Minimizing property of geodesics). (a) The shortest curve between two points on a sur-
face is a geodesic (if parametrized proportionally to arc length).

(b) Converse is false: not all geodesics connecting two points minimize the distance.

(c) A minimizing curve (a geodesic) might not be unique. Moreover, there might be infinitely many of
these.
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(d) There might be no geodesic joining two points on a surface.

Example 12.10 (Geodesics on a surface of revolution). Let S be a surface of revolution with local
parametrization

x(u, v) = (f(v) cosu, f(v) sinu, g(v)),

and let α(s) = x(u(s), v(s)) be a geodesic on S. Then the equations from Prop. 12.5 reduce to

u′′E + u′v′Ev = 0,

v′′G+
1

2
v′2Gv −

1

2
u′2Ev = 0.

The first equation is equivalent to (u′E)′ = 0, or

u′ =
c

f2

for some constant c ∈ R.
Assuming that the the generating curve (f, 0, g) is unit speed, the second equation is reduced to

v′′G− u′2Ev/2 = 0, or, equivalently,
v′′ − u′2ff ′ = 0

as E = f2.

Corollary. (a) All meridians are geodesics

(b) A parallel v = v0 is geodesic if and only if f ′(v0) = 0.

Proposition 12.11 (Clairaut relation). Let S be a surface of revolution with local parametrization

x(u, v) = (f(v) cosu, f(v) sinu, g(v)),

and let α(s) = x(u(s), v(s)) be a geodesic on S. Denote by Θ(s) the angle formed formed by α′(s) and
the parallel through α(s). Then

f(v(s)) cos Θ(s) = const

Example 12.12 (Torus of revolution). Let S be a torus of revolution with local parametrization

x(u, v) = ((R+ r cos v) cosu, (R+ r cos v) sinu, r sin v)

for 0 < r < R. Let α(s) be a geodesic on S through a point α(0) = (R+ r, 0, 0). Denote by Θ0 the angle
formed by α′(0) and xu. Then α(s) satisfies the equation

(R+ r cos v(s)) cos Θ(s) = (R+ r) cos Θ0

Definition 12.13. A geodesic α : I −→ S is closed if there is c ∈ R+ such that α(s+ c) = α(s) for every
s ∈ I.

Example 12.14. (a) Every geodesic on a sphere is closed.

(b) The only closed geodesics on a cylinder are parallels.

Example 12.15. There are no closed geodesics on an elliptic paraboloid of revolution.
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