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Differential Geometry III, Term 2 (Section 12)

12 Geodesics

Definition 12.1. Let a: I — S be a (regular) curve on a surface S C R3. « is called geodesic if o is
normal to S (i.e., a”(s) is orthogonal to Ty () S for all s € I).

Note that the curve does not need to be parametrized by arc length, but we have:

Proposition 12.2 (Geodesics have constant speed). Let a be a geodesic, then ||@'|| is constant, i.e.,
there exists ¢ > 0 such that a/(s) = ¢ for all s € I.

In other words, a geodesic is always parametrized proportionally to arc length.
Example 12.3.

(a) Lines are geodesics.

Let S be a surface and a be a line in S. Then a”(s) = 0, hence &” is normal to any vector (in
particular to the tangent plane T, () S). Therefore, o is a geodesic.

(b) Geodesics on a cylinder.

Let S = {(z,y,2)|2% +y? = 1}, then any geodesic e on S is parametrized by
a(s) = (cos(as + b),sin(as + b), \s + p)
for some A, y,a,b € R. If a = 0 then « is a meridian, if A = 0 then « is a parallel.

(c) Great circles on a sphere are geodesics.
A great circle on a sphere is the curve given by the intersection of the sphere with a plane through
its origin.
Let S = {(z,y,2)| 2% +y?+ 22 =1}, and let v, w be orthonormal in R3. Set

a(s) = (coss)v + (sins)w

for s € I (I some interval). Then a”(s) = —a(s) = —N(a(s)), hence « is orthogonal to Ty (S
and « is a geodesic.

Proposition 12.4 (Equivalent characterization of geodesics). The following are equivalent (TFAE):
(a) a is a geodesic;
(b) « has constant speed and its geodesic curvature vanishes.

Proposition 12.5 (Geodesics in a local parametrization). Let a: I — S be a curve on a surface
S C R3 and let £: U — S be a local parametrization. We write a(s) = x(u(s),v(s)) and E, F, G for
the coefficients of the first fundamental form w.r.t. . Then the following are equivalent:



(a) a is a geodesic;
(b) " -2, =0and a" -z, = 0;
(c)
" 1 N2 /) N2 1 "
u E—i—i(u) E,+uvE, + (V') <Fv—§Gu>+v F =0,
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V'G + 5(1}’)26’” + 4Gy + (u')? (Fu — §Ev) +u"F =0.

Let us now state the main theorem about geodesics:

Theorem 12.6 (Local existence and uniqueness of geodesics). (a) Let p € S, w € TS\ {0}. Then
there exists € > 0 and a unique geodesic a: (—¢,e) — S such that a(0) = p and &/(0) = w.

(b) Geodesics are determined entirely by the coefficients of the first fundamental form E, F and G (and
their derivatives) in a local parametrization.

Corollary 12.7 (Isometries take geodesics to geodesics). Let f: S — S be a local isometry between
two surfaces S and S, and let a: I — S be a geodesic on S. Then foa: I — § is also a geodesic on
S.

Example 12.8.

(a) Plane.

We know that E = G = 1 and F = 0 (in the standard parametrization (u,v) € R?), so the local
equation for a geodesic is
' =0 and v =0

This means that
u(s) = up + as and v(s) = wvg + bs

for some numbers ug, vg, a,b ((ug, vo) is the starting point and w = (a, b) is the initial speed vector).
These are all geodesics on a plane

(b) Cylinder.
Let S :={(z,y,2)|2%2+y? = 1} be a cylinder and f: R? — S be given by f(u,v) = (cosu,sinu, v),
then f is a local isometry. Geodesics on the cylinder S are just images of lines under f:
e lines s — (coswug,sinug, s) (up some constant): image of the line s — (ug, s);
e circles s — (cos s,sin s, vg) (vy some constant): image of the line s — (s, vp);

e helices s — (cos s,sin s, vg + as) (vg, a some constants): image of the line s — (s,vg + as) (the
circles above are the case a = 0)

These are all geodesics (use the local uniqueness result of Theorem 12.6), cf. Example 12.3.

Remark 12.9 (Minimizing property of geodesics). (a) The shortest curve between two points on a sur-
face is a geodesic (if parametrized proportionally to arc length).

(b) Converse is false: not all geodesics connecting two points minimize the distance.

(¢) A minimizing curve (a geodesic) might not be unique. Moreover, there might be infinitely many of
these.



(d) There might be no geodesic joining two points on a surface.

Example 12.10 (Geodesics on a surface of revolution). Let S be a surface of revolution with local
parametrization

w(u,v) = (f(v) cosu, f(v) sinu, g(v)),
and let a(s) = x(u(s),v(s)) be a geodesic on S. Then the equations from Prop. 12.5 reduce to
W'E+uvE, =0,

1 1
VG + §U,2GU — iu'QEv =0.

The first equation is equivalent to (u'E) = 0, or

for some constant ¢ € R.
Assuming that the the generating curve (f,0,¢g) is unit speed, the second equation is reduced to
V"G —u?E,/2 =0, or, equivalently,
U//_UIfol:()

as E = f2.
Corollary. (a) All meridians are geodesics
(b) A parallel v = v is geodesic if and only if f'(vg) = 0.

Proposition 12.11 (Clairaut relation). Let S be a surface of revolution with local parametrization

x(u,v) = (f(v)cosu, f(v)sinu, g(v)),

and let a(s) = x(u(s),v(s)) be a geodesic on S. Denote by O(s) the angle formed formed by a'(s) and
the parallel through a(s). Then
f(v(s)) cos O(s) = const

Example 12.12 (Torus of revolution). Let S be a torus of revolution with local parametrization
x(u,v) = ((R+ rcosv)cosu, (R+ rcosv)sinu, rsinwv)

for 0 < r < R. Let a(s) be a geodesic on S through a point a(0) = (R+r,0,0). Denote by g the angle
formed by o/(0) and x,. Then a(s) satisfies the equation

(R4 rcosv(s))cosO(s) = (R+1)cosBOg

Definition 12.13. A geodesic a: I — S is closed if there is ¢ € Ry such that a(s+c) = a(s) for every
sel.

Example 12.14. (a) Every geodesic on a sphere is closed.
(b) The only closed geodesics on a cylinder are parallels.

Example 12.15. There are no closed geodesics on an elliptic paraboloid of revolution.



