Differential Geometry III, Term 2 (Section 12)

12 Geodesics

Definition 12.1. Let $\boldsymbol{\alpha}: I \longrightarrow S$ be a (regular) curve on a surface $S \subset \mathbb{R}^{3}$. $\boldsymbol{\alpha}$ is called geodesic if $\boldsymbol{\alpha}^{\prime \prime}$ is normal to S (i.e., $\boldsymbol{\alpha}^{\prime \prime}(s)$ is orthogonal to $T_{\boldsymbol{\alpha}(s)} S$ for all $s \in I$).

Note that the curve does not need to be parametrized by arc length, but we have:
Proposition 12.2 (Geodesics have constant speed). Let $\boldsymbol{\alpha}$ be a geodesic, then $\left\|\boldsymbol{\alpha}^{\prime}\right\|$ is constant, i.e., there exists $c>0$ such that $\boldsymbol{\alpha}^{\prime}(s)=c$ for all $s \in I$.

In other words, a geodesic is always parametrized proportionally to arc length.

Example 12.3.

(a) Lines are geodesics.

Let S be a surface and $\boldsymbol{\alpha}$ be a line in S. Then $\boldsymbol{\alpha}^{\prime \prime}(s)=0$, hence $\boldsymbol{\alpha}^{\prime \prime}$ is normal to any vector (in particular to the tangent plane $\left.T_{\boldsymbol{\alpha}(s)} S\right)$. Therefore, $\boldsymbol{\alpha}$ is a geodesic.
(b) Geodesics on a cylinder.

Let $S=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$, then any geodesic $\boldsymbol{\alpha}$ on S is parametrized by

$$
\boldsymbol{\alpha}(s)=(\cos (a s+b), \sin (a s+b), \lambda s+\mu)
$$

for some $\lambda, \mu, a, b \in \mathbb{R}$. If $a=0$ then $\boldsymbol{\alpha}$ is a meridian, if $\lambda=0$ then $\boldsymbol{\alpha}$ is a parallel.
(c) Great circles on a sphere are geodesics.

A great circle on a sphere is the curve given by the intersection of the sphere with a plane through its origin.
Let $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$, and let $\boldsymbol{v}, \boldsymbol{w}$ be orthonormal in \mathbb{R}^{3}. Set

$$
\boldsymbol{\alpha}(s)=(\cos s) \boldsymbol{v}+(\sin s) \boldsymbol{w}
$$

for $s \in I$ (I some interval). Then $\boldsymbol{\alpha}^{\prime \prime}(s)=-\boldsymbol{\alpha}(s)=-\boldsymbol{N}(\boldsymbol{\alpha}(s))$, hence $\boldsymbol{\alpha}$ is orthogonal to $T_{\boldsymbol{\alpha}(s)} S$ and $\boldsymbol{\alpha}$ is a geodesic.

Proposition 12.4 (Equivalent characterization of geodesics). The following are equivalent (TFAE):
(a) $\boldsymbol{\alpha}$ is a geodesic;
(b) $\boldsymbol{\alpha}$ has constant speed and its geodesic curvature vanishes.

Proposition 12.5 (Geodesics in a local parametrization). Let $\alpha: I \longrightarrow S$ be a curve on a surface $S \subset \mathbb{R}^{3}$, and let $\boldsymbol{x}: U \longrightarrow S$ be a local parametrization. We write $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$ and E, F, G for the coefficients of the first fundamental form w.r.t. \boldsymbol{x}. Then the following are equivalent:
(a) $\boldsymbol{\alpha}$ is a geodesic;
(b) $\boldsymbol{\alpha}^{\prime \prime} \cdot \boldsymbol{x}_{u}=0$ and $\boldsymbol{\alpha}^{\prime \prime} \cdot \boldsymbol{x}_{v}=0$;
(c)

$$
\begin{aligned}
u^{\prime \prime} E+\frac{1}{2}\left(u^{\prime}\right)^{2} E_{u}+u^{\prime} v^{\prime} E_{v}+\left(v^{\prime}\right)^{2}\left(F_{v}-\frac{1}{2} G_{u}\right)+v^{\prime \prime} F & =0, \\
v^{\prime \prime} G+\frac{1}{2}\left(v^{\prime}\right)^{2} G_{v}+u^{\prime} v^{\prime} G_{u}+\left(u^{\prime}\right)^{2}\left(F_{u}-\frac{1}{2} E_{v}\right)+u^{\prime \prime} F & =0 .
\end{aligned}
$$

Let us now state the main theorem about geodesics:
Theorem 12.6 (Local existence and uniqueness of geodesics). (a) Let $p \in S, \boldsymbol{w} \in T_{p} S \backslash\{0\}$. Then there exists $\varepsilon>0$ and a unique geodesic $\boldsymbol{\alpha}:(-\varepsilon, \varepsilon) \longrightarrow S$ such that $\boldsymbol{\alpha}(0)=p$ and $\boldsymbol{\alpha}^{\prime}(0)=\boldsymbol{w}$.
(b) Geodesics are determined entirely by the coefficients of the first fundamental form E, F and G (and their derivatives) in a local parametrization.

Corollary 12.7 (Isometries take geodesics to geodesics). Let $f: S \longrightarrow \widetilde{S}$ be a local isometry between two surfaces S and \widetilde{S}, and let $\alpha: I \longrightarrow S$ be a geodesic on S. Then $f \circ \boldsymbol{\alpha}: I \longrightarrow \widetilde{S}$ is also a geodesic on \widetilde{S}.

Example 12.8.

(a) Plane.

We know that $E=G=1$ and $F=0$ (in the standard parametrization $(u, v) \in \mathbb{R}^{2}$), so the local equation for a geodesic is

$$
u^{\prime \prime}=0 \quad \text { and } \quad v^{\prime \prime}=0
$$

This means that

$$
u(s)=u_{0}+a s \quad \text { and } \quad v(s)=v_{0}+b s
$$

for some numbers $u_{0}, v_{0}, a, b\left(\left(u_{0}, v_{0}\right)\right.$ is the starting point and $\boldsymbol{w}=(a, b)$ is the initial speed vector $)$. These are all geodesics on a plane

(b) Cylinder.

Let $S:=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$ be a cylinder and $f: \mathbb{R}^{2} \longrightarrow S$ be given by $f(u, v)=(\cos u, \sin u, v)$, then f is a local isometry. Geodesics on the cylinder S are just images of lines under f :

- lines $s \mapsto\left(\cos u_{0}, \sin u_{0}, s\right)$ (u_{0} some constant): image of the line $s \mapsto\left(u_{0}, s\right)$;
- circles $s \mapsto\left(\cos s, \sin s, v_{0}\right)$ (v_{0} some constant): image of the line $s \mapsto\left(s, v_{0}\right)$;
- helices $s \mapsto\left(\cos s, \sin s, v_{0}+a s\right)\left(v_{0}, a\right.$ some constants): image of the line $s \mapsto\left(s, v_{0}+a s\right)$ (the circles above are the case $a=0$)

These are all geodesics (use the local uniqueness result of Theorem 12.6), cf. Example 12.3.
Remark 12.9 (Minimizing property of geodesics). (a) The shortest curve between two points on a surface is a geodesic (if parametrized proportionally to arc length).
(b) Converse is false: not all geodesics connecting two points minimize the distance.
(c) A minimizing curve (a geodesic) might not be unique. Moreover, there might be infinitely many of these.
(d) There might be no geodesic joining two points on a surface.

Example 12.10 (Geodesics on a surface of revolution). Let S be a surface of revolution with local parametrization

$$
\boldsymbol{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v)),
$$

and let $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$ be a geodesic on S. Then the equations from Prop. 12.5 reduce to

$$
\begin{aligned}
u^{\prime \prime} E+u^{\prime} v^{\prime} E_{v} & =0, \\
v^{\prime \prime} G+\frac{1}{2} v^{\prime 2} G_{v}-\frac{1}{2} u^{\prime 2} E_{v} & =0 .
\end{aligned}
$$

The first equation is equivalent to $\left(u^{\prime} E\right)^{\prime}=0$, or

$$
u^{\prime}=\frac{c}{f^{2}}
$$

for some constant $c \in \mathbb{R}$.
Assuming that the the generating curve $(f, 0, g)$ is unit speed, the second equation is reduced to $v^{\prime \prime} G-u^{\prime 2} E_{v} / 2=0$, or, equivalently,

$$
v^{\prime \prime}-u^{\prime 2} f f^{\prime}=0
$$

as $E=f^{2}$.
Corollary. (a) All meridians are geodesics
(b) A parallel $v=v_{0}$ is geodesic if and only if $f^{\prime}\left(v_{0}\right)=0$.

Proposition 12.11 (Clairaut relation). Let S be a surface of revolution with local parametrization

$$
\boldsymbol{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v)),
$$

and let $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$ be a geodesic on S. Denote by $\Theta(s)$ the angle formed formed by $\boldsymbol{\alpha}^{\prime}(s)$ and the parallel through $\boldsymbol{\alpha}(s)$. Then

$$
f(v(s)) \cos \Theta(s)=\text { const }
$$

Example 12.12 (Torus of revolution). Let S be a torus of revolution with local parametrization

$$
\boldsymbol{x}(u, v)=((R+r \cos v) \cos u,(R+r \cos v) \sin u, r \sin v)
$$

for $0<r<R$. Let $\boldsymbol{\alpha}(s)$ be a geodesic on S through a point $\boldsymbol{\alpha}(0)=(R+r, 0,0)$. Denote by Θ_{0} the angle formed by $\boldsymbol{\alpha}^{\prime}(0)$ and \boldsymbol{x}_{u}. Then $\boldsymbol{\alpha}(s)$ satisfies the equation

$$
(R+r \cos v(s)) \cos \Theta(s)=(R+r) \cos \Theta_{0}
$$

Definition 12.13. A geodesic $\boldsymbol{\alpha}: I \longrightarrow S$ is closed if there is $c \in \mathbb{R}_{+}$such that $\boldsymbol{\alpha}(s+c)=\boldsymbol{\alpha}(s)$ for every $s \in I$.

Example 12.14. (a) Every geodesic on a sphere is closed.
(b) The only closed geodesics on a cylinder are parallels.

Example 12.15. There are no closed geodesics on an elliptic paraboloid of revolution.

