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Analysis III/IV, Solutions 1 (Weeks 1-2)

Starred problems are more difficult and are not for submission.

Real numbers. Countable and uncountable sets.

1.1. Show that there exist n, k € N such that

(a) (1 + 1g0000)"™ > 1000000;
(b) (1— 10(1)00)k < 100(1)000'

Solution:

(a) For every positive a € R and for any n € N one has (14 a)” > 1 4 na. By the Archimedean property of N,
for any positive a,b € R there exists n € N such that na > b. Thus, taking a = m and b = 1000000, we
see that there exists n € N such that

1 1
" >1+ ———n > 1000000.

1 -
(1+ 1000000) - 1000000
(b) We reduce this to the previous exercise (though it could be solved directly as well).
Observe that 1 — 15555 < 1 — Too5505, Which implies (1 — 5a55)F < (1 — toos05)"- Now observe that
(1 = t5a0505) (1 + Too6003) < 1> 50 (1 — to5ea05)" (1 + to6005)" < 1. Therefore, for k = n from (a), we obtain
1 1 1 1
1——)F < (1- k< < :
0~ 16000’ =~ To00000) < {1+ 7o —3F ~ 1000000

1.2. Without using uncountability of R, show that R\ Q is not empty.
Hint: consider the set {x € R|z? < 3}.

Solution:

Let S = {z € R|z? < 3}. S is bounded from above (for example, by 2), so there exists s = sup.S. We want to
prove two statements: first, that s2 = 3 (call it Claim 1), and second, that s ¢ Q (Claim 2). This will complete the
proof.

Proof of Claim 1.
Suppose that s? < 3,i.e. s2 =3 —¢, ¢ > 0. Let § € (0,1). Then

(s4+0)?=54+250+6"=3—c+250+6°<3—e+250+6=3—c+6(2s+1).

Now, taking 0 small enough, we can assume that §(2s + 1) < e (deduce this from the Archimedean property of R).
Thus, there exists 6 > 0, such that (s + §)? < 3, which contradicts s being the supremum of S.

In a similar way, one can prove that an assumption s > 3 leads to a contradiction (do it!). Thus, s? = 3.

Proof of Claim 2.

Now, suppose s = p/q € Q, where p € Z and ¢ € N. We can also assume p and ¢ have no common divisors. Then
p? = 3¢%. This implies that p is divisible by 3, i.e. p = 3p, p € Z. Therefore, 3p% = ¢2, so q is divisible by 3, which
contradicts to the assumtion of p and ¢ being coprime.

1.3. Is it true that
(a) If |A| = |B| and |C| = |D|, then |A x C| = |B x D|?

(b) If |A| = |B] and |C| = |D|, then |AUC| = |BUD|?
(¢c) An interval (a,b) (where a < b) is equipotent to R?

Solution:
(a) Let f: A— B and g: C — D be bijections. Then the map h: A x C — B x D defined by
h(a,c) = (f(a),g(c))

is a bijection, so the statement is always true.



(b)

Counterexample:

A=B=C={1}, D=2}
Then AUC = {1}, BUD = {1, 2}, so they are not equipotent. Therefore, the statement may not be true for
sets satisfying the assumptions.
Note that if we add an assumption that ANC = BN D = (), then the statement will become true (prove it!).
One way is to write the formula explicitly: take f : (a,b) — R,

f(x):tanbia <x—b—i2_a)

(note that the formula also tells us that any two intervals are equipotent).

Alternatively, this can be done geometrically: an interval I is equipotent to a semi-circle without endpoints
with dimater I (via orthogonal projection to the interval), and a semi-circle is equipotent to a line via a
projection from the center.

1.4. Show that

(a)
(b)
(c)

Every infinite set has a countable infinite subset.
If A is countable and B is infinite, then |AU B| = |B|.
If A is countable and B is uncountable, then |B \ A| = |B|.

Solution:

(a)
(b)

Let B be infinite, take 1 € B. Then take x5 € By = B\ {z1}, and in general x;1+1 € By = B\ U;<xx;. Since
B is infinite, every By, is not empty. Now C' = U;en{z;} (= B\ (NienBi)) is countable, C' C B.
By (a), we can take a countable infinite C' C B. Then B=CU (B\C),and AUB =(AUC)U(B\C) =
((A\B)UC U(B\ (). Now, A\ B is countable as a subset of a countable set, so ((A\ B)UC) is also countable
infinite as a union of two countable sets (at least one of which is infinite). Therefore, |((A\ B)UC)| = |C],
and since both sets do not intersect with (B \ C), we have (see the solution of Exercise 1.3(b))

[AUB| = [((A\ B)UC)U(B\C)|=[CU(B\C)=|B].

More precisely, the bijective map from A U B to B is constructed in the following way: it is an identity on
B\ C, and maps elements of (A \ B) U C to elements of C' according to a bijection between two infinite
countable sets.

The problem is similar to the previous one. Choose a countable infinite C' C (B \ A), then C' U (AN B) is
countable infinite as a union of two countable sets (at least one of which is infinite). Therefore,

IB\A|=[(B\(AUC)UC|=[(B\(AUC))U((ANB)UC)| = |B|.

Alternatively, we can reduce the problem to (b): B\ A is uncountable and thus infinite, A N B is countable,
so [B\ Al =[(B\ A)U(ANB)|=|B|.

1.5. (Power Set)
Recall that the power set P(A) of a set A is the set of all subsets of A, i.e. P(A) ={S|S C A}.

(a)
(b)

Show that if |[A| =n € N, then |P(A)| = 2".
Show that P(A) is not equipotent to A for any set A.
Hint: suppose that f: A — P(A) is a bijection, and consider the set {a € A|a € f(a)} C A.

Solution:

(a)

(b)

Let A = {x1,...,2,}. We can assign to every subset S C A a sequence of zeroes and ones: we write zero
on k-th place if z ¢ S, and 1 otherwise. It is easy to see that this is a bijection of P(A) onto the set of
sequences of length n, which has 2" elements.

Following the hint, suppose that f : A — P(A) is a bijection, and consider the set S = {a € A|a € f(a)} C A.
Since f is a bijection, there exists s € A such that f(s) = A\ S={ac Ala ¢ f(a)} C A.

If se€ A\ S, then s ¢ f(s) = A\ S by the definition of S, so we have a contradiction. Similarly, if s ¢ A\ S,
then s € f(s) = A\ S by the definition of S, so we have a contradiction again. This implies that a bijection
cannot exist, so the sets A and P(A) are not equipotent.

1.6. (x) (Cantor — Bernstein Theorem)
Given two sets A and B, we write |A| < |B] if there exists an injective map A — B. Show that if both
|A| < |B| and |B| < |A| hold, then A and B are equipotent.



