Analysis III/IV, Solutions 1 (Weeks 1–2)

Starred problems are **more difficult** and are **not for submission**.

Real numbers. Countable and uncountable sets.

1.1. Show that there exist $n, k \in \mathbb{N}$ such that

(a) $(1 + \frac{1}{100000})^n > 1000000;$ (b) $(1 - \frac{1}{10000})^k < \frac{1}{1000000}.$

Solution:

(a) For every positive $a \in \mathbb{R}$ and for any $n \in \mathbb{N}$ one has $(1+a)^n \ge 1 + na$. By the Archimedean property of \mathbb{N} , for any positive $a, b \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that na > b. Thus, taking $a = \frac{1}{1000000}$ and b = 1000000, we see that there exists $n \in \mathbb{N}$ such that

$$(1 + \frac{1}{100000})^n \ge 1 + \frac{1}{100000}n > 1000000$$

(b) We reduce this to the previous exercise (though it could be solved directly as well).

Observe that $1 - \frac{1}{10000} < 1 - \frac{1}{100000}$, which implies $(1 - \frac{1}{1000})^k < (1 - \frac{1}{100000})^k$. Now observe that $(1 - \frac{1}{1000000})(1 + \frac{1}{1000000}) < 1$, so $(1 - \frac{1}{1000000})^k (1 + \frac{1}{1000000})^k < 1$. Therefore, for k = n from (a), we obtain

$$\left(1 - \frac{1}{10000}\right)^k < \left(1 - \frac{1}{1000000}\right)^k < \frac{1}{\left(1 + \frac{1}{1000000}\right)^k} < \frac{1}{1000000}$$

1.2. Without using uncountability of \mathbb{R} , show that $\mathbb{R} \setminus \mathbb{Q}$ is not empty.

Hint: consider the set $\{x \in \mathbb{R} \mid x^2 < 3\}$.

Solution:

Let $S = \{x \in \mathbb{R} | x^2 < 3\}$. S is bounded from above (for example, by 2), so there exists $s = \sup S$. We want to prove two statements: first, that $s^2 = 3$ (call it Claim 1), and second, that $s \notin \mathbb{Q}$ (Claim 2). This will complete the proof.

Proof of Claim 1. Suppose that $s^2 < 3$, i.e. $s^2 = 3 - \epsilon$, $\epsilon > 0$. Let $\delta \in (0, 1)$. Then $(s + \delta)^2 = s^2 + 2s\delta + \delta^2 = 3 - \epsilon + 2s\delta + \delta^2 < 3 - \epsilon + 2s\delta + \delta = 3 - \epsilon + \delta(2s + 1).$

Now, taking δ small enough, we can assume that $\delta(2s+1) < \epsilon$ (deduce this from the Archimedean property of \mathbb{R}). Thus, there exists $\delta > 0$, such that $(s+\delta)^2 < 3$, which contradicts s being the supremum of S.

In a similar way, one can prove that an assumption $s^2 > 3$ leads to a contradiction (do it!). Thus, $s^2 = 3$.

Proof of Claim 2.

Now, suppose $s = p/q \in \mathbb{Q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. We can also assume p and q have no common divisors. Then $p^2 = 3q^2$. This implies that p is divisible by 3, i.e. $p = 3\tilde{p}$, $\tilde{p} \in \mathbb{Z}$. Therefore, $3\tilde{p}^2 = q^2$, so q is divisible by 3, which contradicts to the assumption of p and q being coprime.

1.3. Is it true that

- (a) If |A| = |B| and |C| = |D|, then $|A \times C| = |B \times D|$?
- (b) If |A| = |B| and |C| = |D|, then $|A \cup C| = |B \cup D|$?
- (c) An interval (a, b) (where a < b) is equipotent to \mathbb{R} ?

Solution:

(a) Let $f: A \to B$ and $g: C \to D$ be bijections. Then the map $h: A \times C \to B \times D$ defined by

$$h(a,c) = (f(a),g(c))$$

is a bijection, so the statement is always true.

(b) Counterexample:

$$A = B = C = \{1\}, \quad D = \{2\}.$$

Then $A \cup C = \{1\}$, $B \cup D = \{1, 2\}$, so they are not equipotent. Therefore, the statement may not be true for sets satisfying the assumptions.

Note that if we add an assumption that $A \cap C = B \cap D = \emptyset$, then the statement will become true (prove it!). (c) One way is to write the formula explicitly: take $f : (a, b) \to \mathbb{R}$,

$$f(x) = \tan \frac{\pi}{b-a} \left(x - \frac{b+a}{2} \right)$$

(note that the formula also tells us that any two intervals are equipotent).

Alternatively, this can be done geometrically: an interval I is equipotent to a semi-circle without endpoints with dimater I (via orthogonal projection to the interval), and a semi-circle is equipotent to a line via a projection from the center.

1.4. Show that

- (a) Every infinite set has a countable infinite subset.
- (b) If A is countable and B is infinite, then $|A \cup B| = |B|$.
- (c) If A is countable and B is uncountable, then $|B \setminus A| = |B|$.

Solution:

- (a) Let B be infinite, take $x_1 \in B$. Then take $x_2 \in B_1 = B \setminus \{x_1\}$, and in general $x_{k+1} \in B_k = B \setminus \bigcup_{i \leq k} x_i$. Since B is infinite, every B_k is not empty. Now $C = \bigcup_{i \in \mathbb{N}} \{x_i\} (= B \setminus (\bigcap_{i \in \mathbb{N}} B_i))$ is countable, $C \subseteq B$.
- (b) By (a), we can take a countable infinite $C \subseteq B$. Then $B = C \cup (B \setminus C)$, and $A \cup B = (A \cup C) \cup (B \setminus C) = ((A \setminus B) \cup C) \cup (B \setminus C)$. Now, $A \setminus B$ is countable as a subset of a countable set, so $((A \setminus B) \cup C)$ is also countable infinite as a union of two countable sets (at least one of which is infinite). Therefore, $|((A \setminus B) \cup C)| = |C|$, and since both sets do not intersect with $(B \setminus C)$, we have (see the solution of Exercise 1.3(b))

$$|A \cup B| = |((A \setminus B) \cup C) \cup (B \setminus C)| = |C \cup (B \setminus C)| = |B|.$$

More precisely, the bijective map from $A \cup B$ to B is constructed in the following way: it is an identity on $B \setminus C$, and maps elements of $(A \setminus B) \cup C$ to elements of C according to a bijection between two infinite countable sets.

(c) The problem is similar to the previous one. Choose a countable infinite $C \subseteq (B \setminus A)$, then $C \cup (A \cap B)$ is countable infinite as a union of two countable sets (at least one of which is infinite). Therefore,

$$|B \setminus A| = |(B \setminus (A \cup C)) \cup C| = |(B \setminus (A \cup C)) \cup ((A \cap B) \cup C)| = |B|.$$

Alternatively, we can reduce the problem to (b): $B \setminus A$ is uncountable and thus infinite, $A \cap B$ is countable, so $|B \setminus A| = |(B \setminus A) \cup (A \cap B)| = |B|$.

1.5. (Power Set)

Recall that the *power set* P(A) of a set A is the set of all subsets of A, i.e. $P(A) = \{S \mid S \subseteq A\}$.

(a) Show that if $|A| = n \in \mathbb{N}$, then $|P(A)| = 2^n$.

cannot exist, so the sets A and P(A) are not equipotent.

(b) Show that P(A) is not equipotent to A for any set A. Hint: suppose that $f: A \to P(A)$ is a bijection, and consider the set $\{a \in A \mid a \in f(a)\} \subseteq A$.

Solution:

- (a) Let $A = \{x_1, \ldots, x_n\}$. We can assign to every subset $S \subseteq A$ a sequence of zeroes and ones: we write zero on k-th place if $x_k \notin S$, and 1 otherwise. It is easy to see that this is a bijection of P(A) onto the set of sequences of length n, which has 2^n elements.
- (b) Following the hint, suppose that f: A → P(A) is a bijection, and consider the set S = {a ∈ A | a ∈ f(a)} ⊆ A. Since f is a bijection, there exists s ∈ A such that f(s) = A \ S = {a ∈ A | a ∉ f(a)} ⊆ A. If s ∈ A \ S, then s ∉ f(s) = A \ S by the definition of S, so we have a contradiction. Similarly, if s ∉ A \ S, then s ∈ f(s) = A \ S by the definition of S, so we have a contradiction again. This implies that a bijection

1.6. (*) (Cantor – Bernstein Theorem)

Given two sets A and B, we write $|A| \leq |B|$ if there exists an injective map $A \to B$. Show that if both $|A| \leq |B|$ and $|B| \leq |A|$ hold, then A and B are equipotent.