Analysis III/IV, Solutions 1 (Weeks 1-2)

Starred problems are more difficult and are not for submission.

Real numbers. Countable and uncountable sets.

1.1. Show that there exist $n, k \in \mathbb{N}$ such that
(a) $\left(1+\frac{1}{1000000}\right)^{n}>1000000$;
(b) $\left(1-\frac{1}{10000}\right)^{k}<\frac{1}{1000000}$.

Solution:

(a) For every positive $a \in \mathbb{R}$ and for any $n \in \mathbb{N}$ one has $(1+a)^{n} \geq 1+n a$. By the Archimedean property of \mathbb{N}, for any positive $a, b \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that $n a>b$. Thus, taking $a=\frac{1}{1000000}$ and $b=1000000$, we see that there exists $n \in \mathbb{N}$ such that

$$
\left(1+\frac{1}{1000000}\right)^{n} \geq 1+\frac{1}{1000000} n>1000000
$$

(b) We reduce this to the previous exercise (though it could be solved directly as well).

Observe that $1-\frac{1}{10000}<1-\frac{1}{1000000}$, which implies $\left(1-\frac{1}{10000}\right)^{k}<\left(1-\frac{1}{1000000}\right)^{k}$. Now observe that $\left(1-\frac{1}{1000000}\right)\left(1+\frac{1}{1000000}\right)<1$, so $\left(1-\frac{1}{1000000}\right)^{k}\left(1+\frac{1}{1000000}\right)^{k}<1$. Therefore, for $k=n$ from (a), we obtain

$$
\left(1-\frac{1}{10000}\right)^{k}<\left(1-\frac{1}{1000000}\right)^{k}<\frac{1}{\left(1+\frac{1}{1000000}\right)^{k}}<\frac{1}{1000000} .
$$

1.2. Without using uncountability of \mathbb{R}, show that $\mathbb{R} \backslash \mathbb{Q}$ is not empty.

Hint: consider the set $\left\{x \in \mathbb{R} \mid x^{2}<3\right\}$.

Solution:

Let $S=\left\{x \in \mathbb{R} \mid x^{2}<3\right\}$. S is bounded from above (for example, by 2), so there exists $s=\sup S$. We want to prove two statements: first, that $s^{2}=3$ (call it Claim 1), and second, that $s \notin \mathbb{Q}$ (Claim 2). This will complete the proof.
Proof of Claim 1.
Suppose that $s^{2}<3$, i.e. $s^{2}=3-\epsilon, \epsilon>0$. Let $\delta \in(0,1)$. Then

$$
(s+\delta)^{2}=s^{2}+2 s \delta+\delta^{2}=3-\epsilon+2 s \delta+\delta^{2}<3-\epsilon+2 s \delta+\delta=3-\epsilon+\delta(2 s+1) .
$$

Now, taking δ small enough, we can assume that $\delta(2 s+1)<\epsilon$ (deduce this from the Archimedean property of \mathbb{R}). Thus, there exists $\delta>0$, such that $(s+\delta)^{2}<3$, which contradicts s being the supremum of S.
In a similar way, one can prove that an assumption $s^{2}>3$ leads to a contradiction (do it!). Thus, $s^{2}=3$.
Proof of Claim 2.
Now, suppose $s=p / q \in \mathbb{Q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. We can also assume p and q have no common divisors. Then $p^{2}=3 q^{2}$. This implies that p is divisible by 3, i.e. $p=3 \tilde{p}, \tilde{p} \in \mathbb{Z}$. Therefore, $3 \tilde{p}^{2}=q^{2}$, so q is divisible by 3 , which contradicts to the assumtion of p and q being coprime.
1.3. Is it true that
(a) If $|A|=|B|$ and $|C|=|D|$, then $|A \times C|=|B \times D|$?
(b) If $|A|=|B|$ and $|C|=|D|$, then $|A \cup C|=|B \cup D|$?
(c) An interval (a, b) (where $a<b$) is equipotent to \mathbb{R} ?

Solution:

(a) Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be bijections. Then the map $h: A \times C \rightarrow B \times D$ defined by

$$
h(a, c)=(f(a), g(c))
$$

is a bijection, so the statement is always true.
(b) Counterexample:

$$
A=B=C=\{1\}, \quad D=\{2\} .
$$

Then $A \cup C=\{1\}, B \cup D=\{1,2\}$, so they are not equipotent. Therefore, the statement may not be true for sets satisfying the assumptions.
Note that if we add an assumption that $A \cap C=B \cap D=\emptyset$, then the statement will become true (prove it!).
(c) One way is to write the formula explicitly: take $f:(a, b) \rightarrow \mathbb{R}$,

$$
f(x)=\tan \frac{\pi}{b-a}\left(x-\frac{b+a}{2}\right)
$$

(note that the formula also tells us that any two intervals are equipotent).
Alternatively, this can be done geometrically: an interval I is equipotent to a semi-circle without endpoints with dimater I (via orthogonal projection to the interval), and a semi-circle is equipotent to a line via a projection from the center.

1.4. Show that

(a) Every infinite set has a countable infinite subset.
(b) If A is countable and B is infinite, then $|A \cup B|=|B|$.
(c) If A is countable and B is uncountable, then $|B \backslash A|=|B|$.

Solution:

(a) Let B be infinite, take $x_{1} \in B$. Then take $x_{2} \in B_{1}=B \backslash\left\{x_{1}\right\}$, and in general $x_{k+1} \in B_{k}=B \backslash \cup_{i \leq k} x_{i}$. Since B is infinite, every B_{k} is not empty. Now $C=\cup_{i \in \mathbb{N}}\left\{x_{i}\right\}\left(=B \backslash\left(\cap_{i \in \mathbb{N}} B_{i}\right)\right)$ is countable, $C \subseteq B$.
(b) By (a), we can take a countable infinite $C \subseteq B$. Then $B=C \cup(B \backslash C)$, and $A \cup B=(A \cup C) \cup(B \backslash C)=$ $((A \backslash B) \cup C) \cup(B \backslash C)$. Now, $A \backslash B$ is countable as a subset of a countable set, so $((A \backslash B) \cup C)$ is also countable infinite as a union of two countable sets (at least one of which is infinite). Therefore, $|((A \backslash B) \cup C)|=|C|$, and since both sets do not intersect with $(B \backslash C)$, we have (see the solution of Exercise 1.3(b))

$$
|A \cup B|=|((A \backslash B) \cup C) \cup(B \backslash C)|=|C \cup(B \backslash C)|=|B|
$$

More precisely, the bijective map from $A \cup B$ to B is constructed in the following way: it is an identity on $B \backslash C$, and maps elements of $(A \backslash B) \cup C$ to elements of C according to a bijection between two infinite countable sets.
(c) The problem is similar to the previous one. Choose a countable infinite $C \subseteq(B \backslash A)$, then $C \cup(A \cap B)$ is countable infinite as a union of two countable sets (at least one of which is infinite). Therefore,

$$
|B \backslash A|=|(B \backslash(A \cup C)) \cup C|=|(B \backslash(A \cup C)) \cup((A \cap B) \cup C)|=|B|
$$

Alternatively, we can reduce the problem to (b): B $\backslash A$ is uncountable and thus infinite, $A \cap B$ is countable, so $|B \backslash A|=|(B \backslash A) \cup(A \cap B)|=|B|$.

1.5. (Power Set)

Recall that the power set $P(A)$ of a set A is the set of all subsets of A, i.e. $P(A)=\{S \mid S \subseteq A\}$.
(a) Show that if $|A|=n \in \mathbb{N}$, then $|P(A)|=2^{n}$.
(b) Show that $P(A)$ is not equipotent to A for any set A.

Hint: suppose that $f: A \rightarrow P(A)$ is a bijection, and consider the set $\{a \in A \mid a \in f(a)\} \subseteq A$.

Solution:

(a) Let $A=\left\{x_{1}, \ldots, x_{n}\right\}$. We can assign to every subset $S \subseteq A$ a sequence of zeroes and ones: we write zero on k-th place if $x_{k} \notin S$, and 1 otherwise. It is easy to see that this is a bijection of $P(A)$ onto the set of sequences of length n, which has 2^{n} elements.
(b) Following the hint, suppose that $f: A \rightarrow P(A)$ is a bijection, and consider the set $S=\{a \in A \mid a \in f(a)\} \subseteq A$. Since f is a bijection, there exists $s \in A$ such that $f(s)=A \backslash S=\{a \in A \mid a \notin f(a)\} \subseteq A$.
If $s \in A \backslash S$, then $s \notin f(s)=A \backslash S$ by the definition of S, so we have a contradiction. Similarly, if $s \notin A \backslash S$, then $s \in f(s)=A \backslash S$ by the definition of S, so we have a contradiction again. This implies that a bijection cannot exist, so the sets A and $P(A)$ are not equipotent.

1.6. (\star) (Cantor - Bernstein Theorem)

Given two sets A and B, we write $|A| \leq|B|$ if there exists an injective map $A \rightarrow B$. Show that if both $|A| \leq|B|$ and $|B| \leq|A|$ hold, then A and B are equipotent.

