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Analysis III/IV, Solutions 1 (Weeks 1–2)

Starred problems are more difficult and are not for submission.

Real numbers. Countable and uncountable sets.

1.1. Show that there exist n, k ∈ N such that

(a) (1 + 1
1000000)n > 1000000;

(b) (1− 1
10000)k < 1

1000000 .

Solution:

(a) For every positive a ∈ R and for any n ∈ N one has (1 + a)n ≥ 1 + na. By the Archimedean property of N,
for any positive a, b ∈ R there exists n ∈ N such that na > b. Thus, taking a = 1

1000000 and b = 1000000, we
see that there exists n ∈ N such that

(1 +
1

1000000
)n ≥ 1 +

1

1000000
n > 1000000.

(b) We reduce this to the previous exercise (though it could be solved directly as well).

Observe that 1 − 1
10000 < 1 − 1

1000000 , which implies (1 − 1
10000 )k < (1 − 1

1000000 )k. Now observe that
(1− 1

1000000 )(1 + 1
1000000 ) < 1, so (1− 1

1000000 )k(1 + 1
1000000 )k < 1. Therefore, for k = n from (a), we obtain

(1− 1

10000
)k < (1− 1

1000000
)k <

1

(1 + 1
1000000 )k

<
1

1000000
.

1.2. Without using uncountability of R, show that R \Q is not empty.
Hint: consider the set {x ∈ R |x2 < 3}.
Solution:

Let S = {x ∈ R |x2 < 3}. S is bounded from above (for example, by 2), so there exists s = supS. We want to
prove two statements: first, that s2 = 3 (call it Claim 1), and second, that s /∈ Q (Claim 2). This will complete the
proof.

Proof of Claim 1.
Suppose that s2 < 3, i.e. s2 = 3− ε, ε > 0. Let δ ∈ (0, 1). Then

(s+ δ)2 = s2 + 2sδ + δ2 = 3− ε+ 2sδ + δ2 < 3− ε+ 2sδ + δ = 3− ε+ δ(2s+ 1).

Now, taking δ small enough, we can assume that δ(2s+ 1) < ε (deduce this from the Archimedean property of R).
Thus, there exists δ > 0, such that (s+ δ)2 < 3, which contradicts s being the supremum of S.

In a similar way, one can prove that an assumption s2 > 3 leads to a contradiction (do it!). Thus, s2 = 3.

Proof of Claim 2.
Now, suppose s = p/q ∈ Q, where p ∈ Z and q ∈ N. We can also assume p and q have no common divisors. Then
p2 = 3q2. This implies that p is divisible by 3, i.e. p = 3p̃, p̃ ∈ Z. Therefore, 3p̃2 = q2, so q is divisible by 3, which
contradicts to the assumtion of p and q being coprime.

1.3. Is it true that

(a) If |A| = |B| and |C| = |D|, then |A× C| = |B ×D|?
(b) If |A| = |B| and |C| = |D|, then |A ∪ C| = |B ∪D|?
(c) An interval (a, b) (where a < b) is equipotent to R?

Solution:

(a) Let f : A→ B and g : C → D be bijections. Then the map h : A× C → B ×D defined by

h(a, c) = (f(a), g(c))

is a bijection, so the statement is always true.



(b) Counterexample:
A = B = C = {1}, D = {2}.

Then A∪C = {1}, B ∪D = {1, 2}, so they are not equipotent. Therefore, the statement may not be true for
sets satisfying the assumptions.

Note that if we add an assumption that A∩C = B ∩D = ∅, then the statement will become true (prove it!).

(c) One way is to write the formula explicitly: take f : (a, b)→ R,

f(x) = tan
π

b− a

(
x− b+ a

2

)
(note that the formula also tells us that any two intervals are equipotent).

Alternatively, this can be done geometrically: an interval I is equipotent to a semi-circle without endpoints
with dimater I (via orthogonal projection to the interval), and a semi-circle is equipotent to a line via a
projection from the center.

1.4. Show that

(a) Every infinite set has a countable infinite subset.

(b) If A is countable and B is infinite, then |A ∪B| = |B|.
(c) If A is countable and B is uncountable, then |B \A| = |B|.

Solution:

(a) Let B be infinite, take x1 ∈ B. Then take x2 ∈ B1 = B \ {x1}, and in general xk+1 ∈ Bk = B \∪i≤kxi. Since
B is infinite, every Bk is not empty. Now C = ∪i∈N{xi} (= B \ (∩i∈NBi)) is countable, C ⊆ B.

(b) By (a), we can take a countable infinite C ⊆ B. Then B = C ∪ (B \ C), and A ∪ B = (A ∪ C) ∪ (B \ C) =
((A\B)∪C)∪(B\C). Now, A\B is countable as a subset of a countable set, so ((A\B)∪C) is also countable
infinite as a union of two countable sets (at least one of which is infinite). Therefore, |((A \ B) ∪ C)| = |C|,
and since both sets do not intersect with (B \ C), we have (see the solution of Exercise 1.3(b))

|A ∪B| = |((A \B) ∪ C) ∪ (B \ C)| = |C ∪ (B \ C)| = |B|.

More precisely, the bijective map from A ∪ B to B is constructed in the following way: it is an identity on
B \ C, and maps elements of (A \ B) ∪ C to elements of C according to a bijection between two infinite
countable sets.

(c) The problem is similar to the previous one. Choose a countable infinite C ⊆ (B \ A), then C ∪ (A ∩ B) is
countable infinite as a union of two countable sets (at least one of which is infinite). Therefore,

|B \A| = |(B \ (A ∪ C)) ∪ C| = |(B \ (A ∪ C)) ∪ ((A ∩B) ∪ C)| = |B|.

Alternatively, we can reduce the problem to (b): B \ A is uncountable and thus infinite, A ∩B is countable,
so |B \A| = |(B \A) ∪ (A ∩B)| = |B|.

1.5. (Power Set)
Recall that the power set P (A) of a set A is the set of all subsets of A, i.e. P (A) = {S |S ⊆ A}.

(a) Show that if |A| = n ∈ N, then |P (A)| = 2n.

(b) Show that P (A) is not equipotent to A for any set A.
Hint: suppose that f : A→ P (A) is a bijection, and consider the set {a ∈ A | a ∈ f(a)} ⊆ A.

Solution:

(a) Let A = {x1, . . . , xn}. We can assign to every subset S ⊆ A a sequence of zeroes and ones: we write zero
on k-th place if xk /∈ S, and 1 otherwise. It is easy to see that this is a bijection of P (A) onto the set of
sequences of length n, which has 2n elements.

(b) Following the hint, suppose that f : A→ P (A) is a bijection, and consider the set S = {a ∈ A | a ∈ f(a)} ⊆ A.
Since f is a bijection, there exists s ∈ A such that f(s) = A \ S = {a ∈ A | a /∈ f(a)} ⊆ A.

If s ∈ A \ S, then s /∈ f(s) = A \ S by the definition of S, so we have a contradiction. Similarly, if s /∈ A \ S,
then s ∈ f(s) = A \ S by the definition of S, so we have a contradiction again. This implies that a bijection
cannot exist, so the sets A and P (A) are not equipotent.

1.6. (?) (Cantor – Bernstein Theorem)
Given two sets A and B, we write |A| ≤ |B| if there exists an injective map A → B. Show that if both
|A| ≤ |B| and |B| ≤ |A| hold, then A and B are equipotent.


