Durham University Pavel Tumarkin

Analysis III/IV, Homework 1 (Weeks 1-2)

Due date: Thursday, October 26.

Starred problems are more difficult and are not for submission.

Real numbers. Countable and uncountable sets.

- **1.1.** Show that there exist $n, k \in \mathbb{N}$ such that
 - (a) $(1 + \frac{1}{1000000})^n > 1000000;$
 - (b) $(1 \frac{1}{10000})^k < \frac{1}{1000000}$.
- **1.2.** Without using uncountability of \mathbb{R} , show that $\mathbb{R} \setminus \mathbb{Q}$ is not empty. *Hint:* consider the set $\{x \in \mathbb{R} \mid x^2 < 3\}$.

1.3. Is it true that

- (a) If |A| = |B| and |C| = |D|, then $|A \times C| = |B \times D|$?
- (b) If |A| = |B| and |C| = |D|, then $|A \cup C| = |B \cup D|$?
- (c) An interval (a, b) (where a < b) is equipotent to \mathbb{R} ?

1.4. Show that

- (a) Every infinite set has a countable infinite subset.
- (b) If A is countable and B is infinite, then $|A \cup B| = |B|$.
- (c) If A is countable and B is uncountable, then $|B \setminus A| = |B|$.

1.5. (Power Set)

Recall that the *power set* P(A) of a set A is the set of all subsets of A, i.e. $P(A) = \{S \mid S \subseteq A\}$.

- (a) Show that if $|A| = n \in \mathbb{N}$, then $|P(A)| = 2^n$.
- (b) Show that P(A) is not equipotent to A for any set A. Hint: suppose that $f: A \to P(A)$ is a bijection, and consider the set $\{a \in A \mid a \in f(a)\} \subseteq A$.

1.6. (*) (Cantor – Bernstein Theorem)

Given two sets A and B, we write $|A| \leq |B|$ if there exists an injective map $A \to B$. Show that if both $|A| \leq |B|$ and $|B| \leq |A|$ hold, then A and B are equipotent.