Analysis III/IV, Homework 1 (Weeks 1-2)

Due date: Thursday, October 26.

Starred problems are more difficult and are not for submission.

Real numbers. Countable and uncountable sets.

1.1. Show that there exist $n, k \in \mathbb{N}$ such that
(a) $\left(1+\frac{1}{1000000}\right)^{n}>1000000$;
(b) $\left(1-\frac{1}{10000}\right)^{k}<\frac{1}{1000000}$.
1.2. Without using uncountability of \mathbb{R}, show that $\mathbb{R} \backslash \mathbb{Q}$ is not empty.

Hint: consider the set $\left\{x \in \mathbb{R} \mid x^{2}<3\right\}$.
1.3. Is it true that
(a) If $|A|=|B|$ and $|C|=|D|$, then $|A \times C|=|B \times D|$?
(b) If $|A|=|B|$ and $|C|=|D|$, then $|A \cup C|=|B \cup D|$?
(c) An interval (a, b) (where $a<b$) is equipotent to \mathbb{R} ?
1.4. Show that
(a) Every infinite set has a countable infinite subset.
(b) If A is countable and B is infinite, then $|A \cup B|=|B|$.
(c) If A is countable and B is uncountable, then $|B \backslash A|=|B|$.
1.5. (Power Set)

Recall that the power set $P(A)$ of a set A is the set of all subsets of A, i.e. $P(A)=\{S \mid S \subseteq A\}$.
(a) Show that if $|A|=n \in \mathbb{N}$, then $|P(A)|=2^{n}$.
(b) Show that $P(A)$ is not equipotent to A for any set A.

Hint: suppose that $f: A \rightarrow P(A)$ is a bijection, and consider the set $\{a \in A \mid a \in f(a)\} \subseteq A$.

1.6. (\star) (Cantor - Bernstein Theorem)

Given two sets A and B, we write $|A| \leq|B|$ if there exists an injective map $A \rightarrow B$. Show that if both $|A| \leq|B|$ and $|B| \leq|A|$ hold, then A and B are equipotent.

