
Durham University
Pavel Tumarkin

Michaelmas 2017

Analysis III/IV, Solutions 2 (Weeks 3–4)

Starred problems are more difficult and are not for submission.

Open and closed sets. Sequences in R.

2.1. Let A ⊆ R. A point x ∈ R is called an accumulation point of A if x is a closure point of A \ {x}. We
denote by A′ the set of all accumulation points of A. Show that

(a) the set A′ is closed;

(b) Ā = A ∪A′;

(c) if A is infinite, closed and bounded, then A′ is not empty.

Solution:

(a) Take any point of closure x of A′, we need to prove that x ∈ A′. Let ε > 0, denote Ix = (a− ε, a + ε). Then
there exists y ∈ A′ ∩ Ix. If y = x then x ∈ A′ and we are done, so assume y 6= x. Since y ∈ A′, for every
ε′ > 0 there exists a ∈ A ∩ (y − ε′, y + ε′), a 6= y. Take ε′ small enough such that (y − ε′, y + ε′) ⊂ Ix \ {x}.
Therefore, we proved that for every point of closure x of A′ and for every ε > 0 there exists a ∈ A∩ Ix \ {x},
which means that x ∈ A′, so Ā′ ⊂ A′, and thus A′ is closed.

(b) First, both A and A′ are subsets of Ā by definition, so A∪A′ ⊆ Ā. Conversely, let x /∈ A′. Then there exists
ε > 0 such that (x− ε, x+ ε)∩ (A \ {x}) = ∅, so x ∈ Ā \A′ implies x ∈ A. Thus, is x is a closure point of A,
then x ∈ A ∪A′, so Ā ⊆ A ∪A′.

(c) Since A is infinite, there is an infinite countable subset of A, which gives rise to a sequence with all elements
being distinct. By Bolzano – Weierstrass theorem, there is an accumulation point a of this sequence. Since
all the elements are distinct, a is also an accumulation point of A (note that the closedeness of A is actually
not required).

2.2. Let A ⊆ R. A point x ∈ R is called an isolated point of A if there exists an open interval Ix 3 x not
containing any other point of A. Show that

(a) if x ∈ A, then either x ∈ A′ or x is an isolated point of A;

(b) If every point of A is isolated, then A is countable.

Solution:

(a) If a /∈ A′, then, as we have seen above, there exists ε > 0 such that (a − ε, a + ε) contains no points of A
except a, which is the definition of an isolated point.

(b) For every a ∈ A there exists εa > 0 such that (a − εa, a + εa) contains no points of A except a. Denote
Ia = (a− εa/2, a + εa/2). Then for any two points a1, a2 ∈ A the intervals Ia1

and Ia2
are disjoint. Taking

a rational number qa ∈ Ia for every a ∈ A, we construct a bijection between A and a subset of Q, so A is
countable.

2.3. A set A ⊆ R is called perfect if A = A′. Show that A is perfect if and only if A ⊆ A′ and A is closed.

Solution:

Let A be closed, and assume A ⊆ A′. Then A′ = A′ ∪A = Ā = A (see Exercise 2.1(b)), so A is perfect.

Conversely, if A is perfect, then A = A′, so A ⊆ A′, and A is closed since A′ is always closed (see Exercise 2.1(a)).

2.4. (?) Does there exist a countable perfect set?



2.5. Let a ∈ R or a = ±∞, and let {xn} be a sequence of real numbers. Show that a = lim
n→∞

xn if and only if

a is the only accumulation point of {xn}.

Solution:

Consider the case a ∈ R.

Assume first that a = lim
n→∞

xn. Suppose there is another accumulation point b, take ε = |b − a|/2. Since a is

the limit, there is N ∈ N such that |xn − a| < ε for every n > N . This means that no xn with n > N satisfies
|xn − b| < ε, so b is not an accumulation point.

Conversely, suppose a is the only accumulation point of {xn} but not the limit, so there exists ε > 0 such that
infinitely many elements of {xn} lie outside the interval (a − ε, a + ε), choose a subsequence {xnk

} satisfying
|xnk
− a| ≥ ε. If {xnk

} is bounded, then (by Bolzano – Weierstrass theorem) it has an accumulation point distinct
from a, so we come to a contradiction. If {xnk

} is unbounded, then ±∞ is an accumulation point, so we have a
contradiction again.

Now suppose a = ±∞, say a =∞.

lim
n→∞

xn = ∞ means that for every C ∈ R there exists N ∈ N such that xn > C for every n > N , which is

equivalent to the following statement: for every C ∈ R there are finitely many elements of {xn} which are smaller
than C, and infinitely many elements which are larger that C. This, in its turn, is equivalent to the fact that ∞
is an accumulation point, and any other element of R ∪ ±∞ is not.

2.6. (Base-p expansions)
Let p > 1 be a natural number, and let x ∈ (0, 1).

(a) Show that there exists a sequence {an} of integers such that 0 ≤ an < p for every n ∈ N, and

x =

∞∑
n=1

an
pn

.

(b) Show that the sequence {an} in (a) is unique unless x = q/pn for some q ∈ N, in which case there
are precisely two such sequences.

(c) Show that for every sequence {an} of integers satisfying 0 ≤ an < p for every n ∈ N, the series

∞∑
n=1

an
pn

converges to some x ∈ [0, 1].

Solution:

(a) Given x ∈ R, let a1 be the largest integer such that 0 ≤ a1 < p and a1/p ≤ x. Suppose a1, . . . , an have been

chosen. Let an+1 be the largest integer such that 0 ≤ an+1 < p and an+1

pn+1 ≤ x −
n∑

k=1

ak

pk . This gives rise to

a sequence {an} of integers with 0 ≤ an < p and x −
n∑

k=1

ak

pk < 1/pn for all n ∈ N. Now, given ε > 0, there

exists N such that 1/pN < ε. Then x−
n∑

k=1

ak

pk < 1/pN < ε for all n > N , and therefore x =
∞∑
k=1

ak

pk .

(b) Let x ∈ (0, 1), and suppose there are two distinct sequences {an} and {bn} such that
∞∑
k=1

bk
pk = x =

∞∑
k=1

ak

pk .

Let m be the smallest index for which bm 6= am, assume without loss of generality that am < bm.

Observe that

0 =

∞∑
k=1

bk
pk
−
∞∑
k=1

ak
pk

=

∞∑
k=m

bk
pk
−
∞∑

k=m

ak
pk

=
bm − am

pm
+

( ∞∑
k=m+1

bk
pk
−

∞∑
k=m+1

ak
pk

)
=

bm − am
pm

−

( ∞∑
k=m+1

ak
pk
−

∞∑
k=m+1

bk
pk

)
≥ 1

pm
−

( ∞∑
k=m+1

p− 1

pk
−

∞∑
k=m+1

0

pk

)
=

1

pm
−

∞∑
k=m+1

p− 1

pk
= 0.



Therefore, to have an equality in the inequality above, it is necessary and sufficient to have am = bm − 1,
and for all k > m every bk = 0 and every ak = p− 1, which produces precisely two distinct sequences. This

is equivalent to x = q
pm , where q =

m∑
k=1

bkp
m−k.

Remark.

Geometrically, the proofs of (a) and (b) above can be interpreted in the following way. We subdivide the
interval (0, 1) into p equal parts (indexed from 0 to p− 1), and a1 is the number of the part where x belongs
to. We then subdivide this part into p equal parts, and now a2 is the number of the part where x belongs
to, etc. Taking am < bm we put the point in different segments of length 1/pm, so the sequences give rise to
the same number in the only case when this number is the intersection of these two segments. This, in its
turn, can happen in the only case when the segments are neighboring (i.e., bm = am + 1), and x is the left
endpoint of the right segment (i.e., all bk = 0 for k > m) and the right endpoint of the left segment (i.e., all
ak = p− 1 for k > m).

(c) Let {an} be a sequence of integers with 0 ≤ an < p, let sn =
n∑

k=1

ak

pk . Then 0 ≤ sn ≤ (p − 1)
∞∑
k=1

1
pk = 1.

Thus, {sn} is a bounded monotone increasing sequence, so it converges. Furthermore, since 0 ≤ sn ≤ 1 for
all n ∈ N, the sequence converges to a real number x ∈ [0, 1].

2.7. (?) (Continued fractions)
Let {an} be any sequence of natural numbers. Define a sequence {xn} by

x1 = a1, x2 = a1 +
1

a2
, x3 = a1 +

1

a2 + 1
a3

, x4 = a1 +
1

a2 + 1
a3+

1
a4

, . . .

(a) Show that {xn} converges to some x ∈ R.

(b) Find lim
n→∞

xn for an = 1∀n ∈ N.

(c) Find lim
n→∞

xn if ∀n ∈ N a3n−2 = 1, a3n−1 = 2, a3n = 3.

(d) Find {an} such that lim
n→∞

xn =
√

7.


