Analysis III/IV, Homework 2 (Weeks 3–4)

Due date: Thursday, November 9.

Starred problems are more difficult and are not for submission.

Open and closed sets. Sequences in \mathbb{R} .

- **2.1.** Let $A \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is called an *accumulation point of* A if x is a closure point of $A \setminus \{x\}$. We denote by A' the set of all accumulation points of A. Show that
 - (a) the set A' is closed;
 - (b) $\overline{A} = A \cup A';$
 - (c) if A is infinite, closed and bounded, then A' is not empty.
- **2.2.** Let $A \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is called an *isolated point of* A if there exists an open interval $I_x \ni x$ not containing any other point of A. Show that
 - (a) if $x \in A$, then either $x \in A'$ or x is an isolated point of A;
 - (b) If every point of A is isolated, then A is countable.
- **2.3.** A set $A \subseteq \mathbb{R}$ is called *perfect* if A = A'. Show that A is perfect if and only if $A \subseteq A'$ and A is closed.
- **2.4.** (\star) Does there exist a countable perfect set?
- **2.5.** Let $a \in \mathbb{R}$ or $a = \pm \infty$, and let $\{x_n\}$ be a sequence of real numbers. Show that $a = \lim_{n \to \infty} x_n$ if and only if a is the only accumulation point of $\{x_n\}$.

2.6. (Base-p expansions)

Let p > 1 be a natural number, and let $x \in (0, 1)$.

(a) Show that there exists a sequence $\{a_n\}$ of integers such that $0 \le a_n < p$ for every $n \in \mathbb{N}$, and

$$x = \sum_{n=1}^{\infty} \frac{a_n}{p^n}.$$

- (b) Show that the sequence $\{a_n\}$ in (a) is unique unless $x = q/p^n$ for some $q \in \mathbb{N}$, in which case there are precisely two such sequences.
- (c) Show that for every sequence $\{a_n\}$ of integers satisfying $0 \le a_n < p$ for every $n \in \mathbb{N}$, the series

$$\sum_{n=1}^{\infty} \frac{a_n}{p^n}$$

converges to some $x \in [0, 1]$.

2.7. (\star) (Continued fractions)

Let $\{a_n\}$ be any sequence of natural numbers. Define a sequence $\{x_n\}$ by

$$x_1 = a_1, \quad x_2 = a_1 + \frac{1}{a_2}, \quad x_3 = a_1 + \frac{1}{a_2 + \frac{1}{a_3}}, \quad x_4 = a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}, \quad \dots$$

- (a) Show that $\{x_n\}$ converges to some $x \in \mathbb{R}$.
- (b) Find $\lim_{n \to \infty} x_n$ for $a_n = 1 \forall n \in \mathbb{N}$.
- (c) Find $\lim_{n \to \infty} x_n$ if $\forall n \in \mathbb{N} \ a_{3n-2} = 1, a_{3n-1} = 2, a_{3n} = 3.$
- (d) Find $\{a_n\}$ such that $\lim_{n \to \infty} x_n = \sqrt{7}$.