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Analysis III/IV, Solutions 3 (Weeks 5–6)

Starred problems are more difficult and are not for submission.

Series and continuous functions. Outer measure.

3.1. Prove Proposition 2.14: a series
∞∑
k=1

ak converges if and only if

∀ε > 0 ∃N ∈ N such that ∀n ≥ N and ∀m ∈ N one has
∣∣ n+m∑
k=n

ak
∣∣ < ε.

Solution:

Denote by sn =
n∑
k=1

ak partial sums of the series. Then
n+m∑
k=n

ak = sn+m−sn−1, so the condition above is equivalent

to the sequence sn being a Cauchy sequence. This is equivalent to convergence of sn, which is, by definition,

equivalent to convergence of the series
∞∑
k=1

ak.

3.2. (a) Show that if
∞∑
k=1

ak converges then lim
k→∞

ak = 0.

(b) Let ak ≥ 0 for all k ∈ N. Show that if
∞∑
k=1

ak converges then
∞∑
k=1

a3k also converges.

(c) Does the convergence of
∞∑
k=1

ak imply the convergence of
∞∑
k=1

a2k?

(d) (?/2) Is the assertion of (b) true without the assumption of non-negativity of all ak?

Solution:

(a) Denote by sn =
n∑
k=1

ak partial sums of the series. Then the convergence of
∞∑
k=1

ak implies that the sequences

{sn} and {sn−1} both converge to some s ∈ R. Therefore, the sequence of their differences {an = sn− sn−1}
converges to zero.

(b) According to (a), there exists N ∈ N such that for every n > N one has ak < 1. Since ak ≥ 0 for all k ∈ N,

we have 0 ≤ a3k < ak for k > N , which implies the convergence of
∞∑
k=1

a3k.

(c) As a counterexample, we can take any conditionally converging series where the convergence of the terms to

zero is “relatively slow”. For example, one can take ak = (−1)k/
√
k, then

∞∑
k=1

ak converges as an alternating

series with |ak| monotone and tending to zero, but
∞∑
k=1

a2k =
∞∑
k=1

1/k diverges.

3.3. (a) Let f : [a, b] → R be continuous, and let F ⊆ [a, b] be closed. Show that the image f(F ) = {y =
f(x) |x ∈ F} is also closed.

(b) Let (a, b) ⊂ R be a bounded interval, and let f : (a, b)→ R be continuous and bounded. Does this
imply that f is uniformly continuous?

(c) (?/2) Let E ⊂ R be bounded, and let f, g : E → R be uniformly continuous. Is it true that fg is
uniformly continuous?



Solution:

(a) According to Exercise 2.1(b), a set is closed if it contains all its accumulation points. Let y ∈ R be an
accumulation point of f(F ), then for every k ∈ N there exists yk ∈ f(F ) such that |y− yk| < 1/k. Note that
though some yk may appear not once in the sequence {yk}, every yk shows up finitely many times. Consider
the points xk ∈ F such that f(xk) = yk. The points {xk} compose a bounded sequence, so we can take a
subsequence {xki} converging to some x, where x ∈ F since F is closed. Then, as f is continuous,

f(x) = f( lim
i→∞

xki) = lim
i→∞

f(xki) = lim
i→∞

yki = y,

which implies that y ∈ f(F ).

(b) We construct a counterexample as a “highly oscillating” function. Consider any open interval, say E =
(0, 1), and a function f on E defined as f(x) = cos(πx ). Function f is continuous on E as a composition
of continuous functions. Observe that for every k ∈ N we have f( 1

4k+2 ) = cos(2π(2k + 1)) = 1, and

f( 2
4k+2 ) = cos(π(2k + 1)) = −1. Therefore, for every k we can find two points x1 = 1

4k+2 and x2 = 2
4k+2 at

distance 1/(4k+2) such that |f(x1)−f(x2)| = 2. Thus, if we take arbitrary ε < 2 (say, ε = 1), then for every
δ > 0 there exist x1, x2 ∈ E such that |x1 − x2| < δ and |f(x1) − f(x2)| > ε, which implies (by definition)
that f is not uniformly continuous.

3.4. Let f : R → R be a monotone function. Show that the discontinuity set D of f , i.e. D = {x ∈
R | f is not continuous at x}, is either countable or empty.

Solution:

Without loss of generality, assume that f is increasing. According to an exercise from lectures, f has both left
and right limits f(x−) and f(x+) at every point x ∈ R. Thus, for every point z ∈ D, we have an open non-empty
interval (f(z−), f(z+)), and all these intervals are disjoint as for y < z we have f(y+) ≤ f(z−). Taking a rational
number in every such interval, we construct an injective map from D to Q, which implies countability of D.

3.5. Which of the numbers 1/2, 2/3, 3/4 belong to the Cantor set?

Solution:

1/2 /∈ C since 1/2 /∈ C1.

2/3 is an endpoint of one of the two intervals of C1. Observe that, by construction of sets Cn, every endpoint of
every Ck belongs to C, so we deduce that 2/3 ∈ C. (Alternatively, we can note that 2/3 has ternary expression
2/3 = 0.2, so it must belong to C.)

Finally, observe that 3/4 divides C0 = [0, 1] in proportion 3 : 1, and the component [2/3, 1] of C1 in proportion
1 : 3. Now, applying induction, we deduce that it will divide the corresponding parts of C2k as 3 : 1 and the
corresponding parts of C2k+1 as 1 : 3, so it will belong to every Cn, and thus to C.

Alternatively, an easy computation shows that the ternary expression of 3/4 is 0, 20202020... Indeed,

∞∑
k=0

2

32k+1
=

2

3

∞∑
k=0

1

32k
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2

3

∞∑
k=0

1
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=
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=
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3.6. (a) Let m∗(A) = 0. Show that m∗(B ∪A) = m∗(B) for every set B ⊂ R.

(b) Let A,B ⊂ R be bounded, and assume that supA ≤ inf B. Show that m∗(B∪A) = m∗(A)+m∗(B).

(c) Assume that E ⊂ R has positive outer measure. Show that there exists a bounded subset of E with
positive outer measure.

Solution:

(a) First, m∗(B∪A) ≥ m∗(B) by monotonicity of the outer measure, so we are left to show the inverse inequality.
Now, by subadditivity of the outer measure, we have m∗(B ∪A) ≤ m∗(B) +m∗(A) = m∗(B) as m∗(A) = 0,
so m∗(B ∪A) = m∗(B).

(b) Define E = (−∞, supA), E is obviously measurable. Then m∗(B∪A) = m∗((B∪A)∩E)+m∗((B∪A)∩Ec).
Observe that (B ∪A) ∩ Ec = B ∪ {supA}, and (B ∪A) ∩ E = A \ {supA}, so

m∗(B ∪A) = m∗((B ∪A)∩E) +m∗((B ∪A)∩Ec) = m∗(B ∪{supA}) +m∗(A \ {supA}) = m∗(B) +m∗(A)

by (a).

(c) Consider the sets Ek = E ∩ [−k, k] for every k ∈ N. Then E is a union of all Ek, k ∈ N, and all Ek are
bounded. If we assume that the outer measure of every Ek is zero, then the outer measure of E is also zero
as of a countable union of sets of outer measure zero, so we obtain a contradiction.


