## Analysis III/IV, Solutions 3 (Weeks 5-6)

Starred problems are more difficult and are not for submission.

## Series and continuous functions. Outer measure.

3.1. Prove Proposition 2.14: a series $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\forall \varepsilon>0 \exists N \in \mathbb{N}$ such that $\forall n \geq N$ and $\forall m \in \mathbb{N}$ one has $\left|\sum_{k=n}^{n+m} a_{k}\right|<\varepsilon$.

Solution:
Denote by $s_{n}=\sum_{k=1}^{n} a_{k}$ partial sums of the series. Then $\sum_{k=n}^{n+m} a_{k}=s_{n+m}-s_{n-1}$, so the condition above is equivalent to the sequence $s_{n}$ being a Cauchy sequence. This is equivalent to convergence of $s_{n}$, which is, by definition, equivalent to convergence of the series $\sum_{k=1}^{\infty} a_{k}$.
3.2. (a) Show that if $\sum_{k=1}^{\infty} a_{k}$ converges then $\lim _{k \rightarrow \infty} a_{k}=0$.
(b) Let $a_{k} \geq 0$ for all $k \in \mathbb{N}$. Show that if $\sum_{k=1}^{\infty} a_{k}$ converges then $\sum_{k=1}^{\infty} a_{k}^{3}$ also converges.
(c) Does the convergence of $\sum_{k=1}^{\infty} a_{k}$ imply the convergence of $\sum_{k=1}^{\infty} a_{k}^{2}$ ?
(d) $(\star / 2)$ Is the assertion of (b) true without the assumption of non-negativity of all $a_{k}$ ?

Solution:
(a) Denote by $s_{n}=\sum_{k=1}^{n} a_{k}$ partial sums of the series. Then the convergence of $\sum_{k=1}^{\infty} a_{k}$ implies that the sequences $\left\{s_{n}\right\}$ and $\left\{s_{n-1}\right\}$ both converge to some $s \in \mathbb{R}$. Therefore, the sequence of their differences $\left\{a_{n}=s_{n}-s_{n-1}\right\}$ converges to zero.
(b) According to (a), there exists $N \in \mathbb{N}$ such that for every $n>N$ one has $a_{k}<1$. Since $a_{k} \geq 0$ for all $k \in \mathbb{N}$, we have $0 \leq a_{k}^{3}<a_{k}$ for $k>N$, which implies the convergence of $\sum_{k=1}^{\infty} a_{k}^{3}$.
(c) As a counterexample, we can take any conditionally converging series where the convergence of the terms to zero is "relatively slow". For example, one can take $a_{k}=(-1)^{k} / \sqrt{k}$, then $\sum_{k=1}^{\infty} a_{k}$ converges as an alternating series with $\left|a_{k}\right|$ monotone and tending to zero, but $\sum_{k=1}^{\infty} a_{k}^{2}=\sum_{k=1}^{\infty} 1 / k$ diverges.
3.3. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, and let $F \subseteq[a, b]$ be closed. Show that the image $f(F)=\{y=$ $f(x) \mid x \in F\}$ is also closed.
(b) Let $(a, b) \subset \mathbb{R}$ be a bounded interval, and let $f:(a, b) \rightarrow \mathbb{R}$ be continuous and bounded. Does this imply that $f$ is uniformly continuous?
(c) ( $\star / 2$ ) Let $E \subset \mathbb{R}$ be bounded, and let $f, g: E \rightarrow \mathbb{R}$ be uniformly continuous. Is it true that $f g$ is uniformly continuous?

Solution:
(a) According to Exercise 2.1(b), a set is closed if it contains all its accumulation points. Let $y \in \mathbb{R}$ be an accumulation point of $f(F)$, then for every $k \in \mathbb{N}$ there exists $y_{k} \in f(F)$ such that $\left|y-y_{k}\right|<1 / k$. Note that though some $y_{k}$ may appear not once in the sequence $\left\{y_{k}\right\}$, every $y_{k}$ shows up finitely many times. Consider the points $x_{k} \in F$ such that $f\left(x_{k}\right)=y_{k}$. The points $\left\{x_{k}\right\}$ compose a bounded sequence, so we can take a subsequence $\left\{x_{k_{i}}\right\}$ converging to some $x$, where $x \in F$ since $F$ is closed. Then, as $f$ is continuous,

$$
f(x)=f\left(\lim _{i \rightarrow \infty} x_{k_{i}}\right)=\lim _{i \rightarrow \infty} f\left(x_{k_{i}}\right)=\lim _{i \rightarrow \infty} y_{k_{i}}=y
$$

which implies that $y \in f(F)$.
(b) We construct a counterexample as a "highly oscillating" function. Consider any open interval, say $E=$ $(0,1)$, and a function $f$ on $E$ defined as $f(x)=\cos \left(\frac{\pi}{x}\right)$. Function $f$ is continuous on $E$ as a composition of continuous functions. Observe that for every $k \in \mathbb{N}$ we have $f\left(\frac{1}{4 k+2}\right)=\cos (2 \pi(2 k+1))=1$, and $f\left(\frac{2}{4 k+2}\right)=\cos (\pi(2 k+1))=-1$. Therefore, for every $k$ we can find two points $x_{1}=\frac{1}{4 k+2}$ and $x_{2}=\frac{2}{4 k+2}$ at distance $1 /(4 k+2)$ such that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=2$. Thus, if we take arbitrary $\varepsilon<2$ (say, $\varepsilon=1$ ), then for every $\delta>0$ there exist $x_{1}, x_{2} \in E$ such that $\left|x_{1}-x_{2}\right|<\delta$ and $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|>\varepsilon$, which implies (by definition) that $f$ is not uniformly continuous.
3.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone function. Show that the discontinuity set $D$ of $f$, i.e. $D=\{x \in$ $\mathbb{R} \mid f$ is not continuous at $x\}$, is either countable or empty.

Solution:
Without loss of generality, assume that $f$ is increasing. According to an exercise from lectures, $f$ has both left and right limits $f\left(x_{-}\right)$and $f\left(x_{+}\right)$at every point $x \in \mathbb{R}$. Thus, for every point $z \in D$, we have an open non-empty interval $\left(f\left(z_{-}\right), f\left(z_{+}\right)\right)$, and all these intervals are disjoint as for $y<z$ we have $f\left(y_{+}\right) \leq f\left(z_{-}\right)$. Taking a rational number in every such interval, we construct an injective map from $D$ to $\mathbb{Q}$, which implies countability of $D$.
3.5. Which of the numbers $1 / 2,2 / 3,3 / 4$ belong to the Cantor set?

Solution:
$1 / 2 \notin C$ since $1 / 2 \notin C_{1}$.
$2 / 3$ is an endpoint of one of the two intervals of $C_{1}$. Observe that, by construction of sets $C_{n}$, every endpoint of every $C_{k}$ belongs to $C$, so we deduce that $2 / 3 \in C$. (Alternatively, we can note that $2 / 3$ has ternary expression $2 / 3=0.2$, so it must belong to $C$.)
Finally, observe that $3 / 4$ divides $C_{0}=[0,1]$ in proportion $3: 1$, and the component $[2 / 3,1]$ of $C_{1}$ in proportion $1: 3$. Now, applying induction, we deduce that it will divide the corresponding parts of $C_{2 k}$ as $3: 1$ and the corresponding parts of $C_{2 k+1}$ as $1: 3$, so it will belong to every $C_{n}$, and thus to $C$.
Alternatively, an easy computation shows that the ternary expression of $3 / 4$ is $0,20202020 \ldots$ Indeed,

$$
\sum_{k=0}^{\infty} \frac{2}{3^{2 k+1}}=\frac{2}{3} \sum_{k=0}^{\infty} \frac{1}{3^{2 k}}=\frac{2}{3} \sum_{k=0}^{\infty} \frac{1}{9^{k}}=\frac{2}{3} \frac{1}{1-\frac{1}{9}}=\frac{2}{3} \frac{9}{8}=\frac{3}{4}
$$

3.6. (a) Let $m^{*}(A)=0$. Show that $m^{*}(B \cup A)=m^{*}(B)$ for every set $B \subset \mathbb{R}$.
(b) Let $A, B \subset \mathbb{R}$ be bounded, and assume that $\sup A \leq \inf B$. Show that $m^{*}(B \cup A)=m^{*}(A)+m^{*}(B)$.
(c) Assume that $E \subset \mathbb{R}$ has positive outer measure. Show that there exists a bounded subset of $E$ with positive outer measure.
Solution:
(a) First, $m^{*}(B \cup A) \geq m^{*}(B)$ by monotonicity of the outer measure, so we are left to show the inverse inequality. Now, by subadditivity of the outer measure, we have $m^{*}(B \cup A) \leq m^{*}(B)+m^{*}(A)=m^{*}(B)$ as $m^{*}(A)=0$, so $m^{*}(B \cup A)=m^{*}(B)$.
(b) Define $E=(-\infty, \sup A), E$ is obviously measurable. Then $m^{*}(B \cup A)=m^{*}((B \cup A) \cap E)+m^{*}\left((B \cup A) \cap E^{c}\right)$. Observe that $(B \cup A) \cap E^{c}=B \cup\{\sup A\}$, and $(B \cup A) \cap E=A \backslash\{\sup A\}$, so
$m^{*}(B \cup A)=m^{*}((B \cup A) \cap E)+m^{*}\left((B \cup A) \cap E^{c}\right)=m^{*}(B \cup\{\sup A\})+m^{*}(A \backslash\{\sup A\})=m^{*}(B)+m^{*}(A)$ by (a).
(c) Consider the sets $E_{k}=E \cap[-k, k]$ for every $k \in \mathbb{N}$. Then $E$ is a union of all $E_{k}, k \in \mathbb{N}$, and all $E_{k}$ are bounded. If we assume that the outer measure of every $E_{k}$ is zero, then the outer measure of $E$ is also zero as of a countable union of sets of outer measure zero, so we obtain a contradiction.

