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Analysis ITII/IV, Solutions 3 (Weeks 5-6)

Starred problems are more difficult and are not for submission.

Series and continuous functions. Outer measure.
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3.1. Prove Proposition 2.14: a series Y a converges if and only if

k=1
n+m
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Solution:

n+m

Denote by s,, = Z ay, partial sums of the series. Then Z Gk = Sn+m — Sn—1, SO the condition above is equivalent

k=1

k=
to the sequence s, being a Cauchy sequence. This is equlvalent to convergence of s,, which is, by definition,
o0

equivalent to convergence of the series > ay.

3.2. (a)

(b)

()
(d)

k=1

Show that if Z ay, converges then hm ap = 0.
k=1

&) o0
Let aj, > 0 for all k € N. Show that if Y ay converges then Y a3 also converges.

k=1 k=1
o0 o0

Does the convergence of kz ay imply the convergence of kz az?
-1 =1

(x/2) Is the assertion of (b) true without the assumption of non-negativity of all aj?

Solution:

(a)

Denote by s, = Z ay, partial sums of the series. Then the convergence of E ap implies that the sequences
=1
{sn} and {s,— 1} both converge to some s € R. Therefore, the sequence of thelr differences {a, = s, — Sp—1}

converges to zero.
According to (a), there exists N € N such that for every n > N one has a; < 1. Since a > 0 for all £ € N,

o0
we have 0 < a} < ay, for k > N, which implies the convergence of kZ ag.
=1

As a counterexample, we can take any conditionally converging series where the convergence of the terms to

o0
zero is “relatively slow”. For example, one can take aj = (—1)*/v/k, then 3" aj converges as an alternating
k=1

o0 o0
series with |agx| monotone and tending to zero, but > aj = Y 1/k diverges.
k=1 k=1

Let f : [a,b] — R be continuous, and let F' C [a,b] be closed. Show that the image f(F) = {y =
f(x)|x € F} is also closed.

Let (a,b) C R be a bounded interval, and let f : (a,b) — R be continuous and bounded. Does this
imply that f is uniformly continuous?

(x/2) Let E C R be bounded, and let f,g : E — R be uniformly continuous. Is it true that fg is
uniformly continuous?



3.4.

3.5.

3.6.

Solution:

(a) According to Exercise 2.1(b), a set is closed if it contains all its accumulation points. Let y € R be an
accumulation point of f(F), then for every k € N there exists y, € f(F) such that |y — yx| < 1/k. Note that
though some y may appear not once in the sequence {yx}, every yi shows up finitely many times. Consider
the points xy € F such that f(zr) = yr. The points {z)} compose a bounded sequence, so we can take a
subsequence {zj, } converging to some z, where = € F since F is closed. Then, as f is continuous,

f(z) = f(lim z,) = lim f(xg,) = lim yz, =y,
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which implies that y € f(F).

(b) We construct a counterexample as a “highly oscillating” function. Consider any open interval, say E =
(0,1), and a function f on E defined as f(x) = cos(Z). Function f is continuous on E as a composition
of continuous functions. Observe that for every k € N we have f(ﬁ) = cos(2m(2k + 1)) = 1, and
f(ﬁ) = cos(m(2k + 1)) = —1. Therefore, for every k we can find two points x; = ﬁ and xzo = Tiz at

distance 1/(4k+2) such that |f(x1) — f(x2)| = 2. Thus, if we take arbitrary e < 2 (say, € = 1), then for every

0 > 0 there exist z1,22 € F such that |z — 22| < § and |f(z1) — f(x2)| > €, which implies (by definition)

that f is not uniformly continuous.

Let f : R — R be a monotone function. Show that the discontinuity set D of f, ie. D = {x €
R | f is not continuous at x}, is either countable or empty.

Solution:

Without loss of generality, assume that f is increasing. According to an exercise from lectures, f has both left
and right limits f(z_) and f(z4) at every point € R. Thus, for every point z € D, we have an open non-empty
interval (f(z—), f(z4)), and all these intervals are disjoint as for y < z we have f(y4) < f(z—). Taking a rational
number in every such interval, we construct an injective map from D to Q, which implies countability of D.

Which of the numbers 1/2, 2/3, 3/4 belong to the Cantor set?

Solution:

1/2 ¢ C since 1/2 ¢ C;.

2/3 is an endpoint of one of the two intervals of C. Observe that, by construction of sets C,,, every endpoint of
every C} belongs to C, so we deduce that 2/3 € C. (Alternatively, we can note that 2/3 has ternary expression
2/3 = 0.2, so it must belong to C'.)

Finally, observe that 3/4 divides Cy = [0, 1] in proportion 3 : 1, and the component [2/3,1] of C; in proportion
1 : 3. Now, applying induction, we deduce that it will divide the corresponding parts of Cy; as 3 : 1 and the
corresponding parts of Cy41 as 1 : 3, so it will belong to every C,,, and thus to C.

Alternatively, an easy computation shows that the ternary expression of 3/4 is 0,20202020... Indeed,

= 2 2 1 21 2 1 29 3
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(a) Let m*(A) = 0. Show that m*(B U A) = m*(B) for every set B C R.
(b) Let A, B C R be bounded, and assume that sup A < inf B. Show that m*(BUA) = m*(A)+m*(B).

(c) Assume that E' C R has positive outer measure. Show that there exists a bounded subset of E with
positive outer measure.

Solution:

(a) First, m*(BUA) > m*(B) by monotonicity of the outer measure, so we are left to show the inverse inequality.
Now, by subadditivity of the outer measure, we have m*(BU A) < m*(B) + m*(A4) = m*(B) as m*(A) =0,
so m*(BUA) =m*(B).

(b) Define F = (—oo,sup A), E is obviously measurable. Then m*(BUA) = m*((BUA)NE)+m*((BUA)NE*®).
Observe that (BUA)NE® = BU{sup A}, and (BUA)NE = A\ {sup A}, so
m* (BUA)=m*(BUA)NE)+m*((BUA)NE) =m*(BU{sup A}) + m*(A\ {sup A}) = m*(B) +m*(A)

by (a).

(c¢) Consider the sets E, = E N [—k, k] for every k € N. Then F is a union of all E, k € N, and all Ej, are
bounded. If we assume that the outer measure of every FJ is zero, then the outer measure of E is also zero
as of a countable union of sets of outer measure zero, so we obtain a contradiction.



