Analysis III/IV, Solutions 3 (Weeks 5–6)

Starred problems are more difficult and are not for submission.

Series and continuous functions. Outer measure.

3.1. Prove Proposition 2.14: a series $\sum_{k=1}^{\infty} a_k$ converges if and only if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ such that $\forall n \ge N$ and $\forall m \in \mathbb{N}$ one has $\left| \sum_{k=n}^{n+m} a_k \right| < \varepsilon$.

Solution:

Denote by $s_n = \sum_{k=1}^n a_k$ partial sums of the series. Then $\sum_{k=n}^{n+m} a_k = s_{n+m} - s_{n-1}$, so the condition above is equivalent to the sequence s_n being a Cauchy sequence. This is equivalent to convergence of s_n , which is, by definition, equivalent to convergence of the series $\sum_{k=1}^{\infty} a_k$.

3.2. (a) Show that if $\sum_{k=1}^{\infty} a_k$ converges then $\lim_{k \to \infty} a_k = 0$.

- (b) Let $a_k \ge 0$ for all $k \in \mathbb{N}$. Show that if $\sum_{k=1}^{\infty} a_k$ converges then $\sum_{k=1}^{\infty} a_k^3$ also converges.
- (c) Does the convergence of $\sum_{k=1}^{\infty} a_k$ imply the convergence of $\sum_{k=1}^{\infty} a_k^2$?
- (d) $(\star/2)$ Is the assertion of (b) true without the assumption of non-negativity of all a_k ?

Solution:

- (a) Denote by $s_n = \sum_{k=1}^n a_k$ partial sums of the series. Then the convergence of $\sum_{k=1}^{\infty} a_k$ implies that the sequences $\{s_n\}$ and $\{s_{n-1}\}$ both converge to some $s \in \mathbb{R}$. Therefore, the sequence of their differences $\{a_n = s_n s_{n-1}\}$ converges to zero.
- (b) According to (a), there exists $N \in \mathbb{N}$ such that for every n > N one has $a_k < 1$. Since $a_k \ge 0$ for all $k \in \mathbb{N}$, we have $0 \le a_k^3 < a_k$ for k > N, which implies the convergence of $\sum_{k=1}^{\infty} a_k^3$.
- (c) As a counterexample, we can take any conditionally converging series where the convergence of the terms to zero is "relatively slow". For example, one can take $a_k = (-1)^k / \sqrt{k}$, then $\sum_{k=1}^{\infty} a_k$ converges as an alternating series with $|a_k|$ monotone and tending to zero, but $\sum_{k=1}^{\infty} a_k^2 = \sum_{k=1}^{\infty} 1/k$ diverges.
- **3.3.** (a) Let $f : [a, b] \to \mathbb{R}$ be continuous, and let $F \subseteq [a, b]$ be closed. Show that the image $f(F) = \{y = f(x) \mid x \in F\}$ is also closed.
 - (b) Let $(a,b) \subset \mathbb{R}$ be a bounded interval, and let $f: (a,b) \to \mathbb{R}$ be continuous and bounded. Does this imply that f is uniformly continuous?
 - (c) $(\star/2)$ Let $E \subset \mathbb{R}$ be bounded, and let $f, g: E \to \mathbb{R}$ be uniformly continuous. Is it true that fg is uniformly continuous?

Solution:

(a) According to Exercise 2.1(b), a set is closed if it contains all its accumulation points. Let $y \in \mathbb{R}$ be an accumulation point of f(F), then for every $k \in \mathbb{N}$ there exists $y_k \in f(F)$ such that $|y - y_k| < 1/k$. Note that though some y_k may appear not once in the sequence $\{y_k\}$, every y_k shows up finitely many times. Consider the points $x_k \in F$ such that $f(x_k) = y_k$. The points $\{x_k\}$ compose a bounded sequence, so we can take a subsequence $\{x_{k_i}\}$ converging to some x, where $x \in F$ since F is closed. Then, as f is continuous,

$$f(x) = f(\lim_{i \to \infty} x_{k_i}) = \lim_{i \to \infty} f(x_{k_i}) = \lim_{i \to \infty} y_{k_i} = y,$$

which implies that $y \in f(F)$.

- (b) We construct a counterexample as a "highly oscillating" function. Consider any open interval, say E = (0, 1), and a function f on E defined as $f(x) = \cos(\frac{\pi}{x})$. Function f is continuous on E as a composition of continuous functions. Observe that for every $k \in \mathbb{N}$ we have $f(\frac{1}{4k+2}) = \cos(2\pi(2k+1)) = 1$, and $f(\frac{2}{4k+2}) = \cos(\pi(2k+1)) = -1$. Therefore, for every k we can find two points $x_1 = \frac{1}{4k+2}$ and $x_2 = \frac{2}{4k+2}$ at distance 1/(4k+2) such that $|f(x_1) f(x_2)| = 2$. Thus, if we take arbitrary $\varepsilon < 2$ (say, $\varepsilon = 1$), then for every $\delta > 0$ there exist $x_1, x_2 \in E$ such that $|x_1 x_2| < \delta$ and $|f(x_1) f(x_2)| > \varepsilon$, which implies (by definition) that f is not uniformly continuous.
- **3.4.** Let $f : \mathbb{R} \to \mathbb{R}$ be a monotone function. Show that the discontinuity set D of f, i.e. $D = \{x \in \mathbb{R} \mid f \text{ is not continuous at } x\}$, is either countable or empty.

Solution:

Without loss of generality, assume that f is increasing. According to an exercise from lectures, f has both left and right limits $f(x_{-})$ and $f(x_{+})$ at every point $x \in \mathbb{R}$. Thus, for every point $z \in D$, we have an open non-empty interval $(f(z_{-}), f(z_{+}))$, and all these intervals are disjoint as for y < z we have $f(y_{+}) \leq f(z_{-})$. Taking a rational number in every such interval, we construct an injective map from D to \mathbb{Q} , which implies countability of D.

3.5. Which of the numbers 1/2, 2/3, 3/4 belong to the Cantor set?

Solution:

 $1/2 \notin C$ since $1/2 \notin C_1$.

2/3 is an endpoint of one of the two intervals of C_1 . Observe that, by construction of sets C_n , every endpoint of every C_k belongs to C, so we deduce that $2/3 \in C$. (Alternatively, we can note that 2/3 has ternary expression 2/3 = 0.2, so it must belong to C.)

Finally, observe that 3/4 divides $C_0 = [0, 1]$ in proportion 3: 1, and the component [2/3, 1] of C_1 in proportion 1: 3. Now, applying induction, we deduce that it will divide the corresponding parts of C_{2k} as 3: 1 and the corresponding parts of C_{2k+1} as 1: 3, so it will belong to every C_n , and thus to C.

Alternatively, an easy computation shows that the ternary expression of 3/4 is 0, 20202020... Indeed,

$$\sum_{k=0}^{\infty} \frac{2}{3^{2k+1}} = \frac{2}{3} \sum_{k=0}^{\infty} \frac{1}{3^{2k}} = \frac{2}{3} \sum_{k=0}^{\infty} \frac{1}{9^k} = \frac{2}{3} \frac{1}{1 - \frac{1}{9}} = \frac{2}{3} \frac{9}{8} = \frac{3}{4}.$$

3.6. (a) Let $m^*(A) = 0$. Show that $m^*(B \cup A) = m^*(B)$ for every set $B \subset \mathbb{R}$.

- (b) Let $A, B \subset \mathbb{R}$ be bounded, and assume that $\sup A \leq \inf B$. Show that $m^*(B \cup A) = m^*(A) + m^*(B)$.
- (c) Assume that $E \subset \mathbb{R}$ has positive outer measure. Show that there exists a bounded subset of E with positive outer measure.

Solution:

- (a) First, $m^*(B \cup A) \ge m^*(B)$ by monotonicity of the outer measure, so we are left to show the inverse inequality. Now, by subadditivity of the outer measure, we have $m^*(B \cup A) \le m^*(B) + m^*(A) = m^*(B)$ as $m^*(A) = 0$, so $m^*(B \cup A) = m^*(B)$.
- (b) Define $E = (-\infty, \sup A)$, E is obviously measurable. Then $m^*(B \cup A) = m^*((B \cup A) \cap E) + m^*((B \cup A) \cap E^c)$. Observe that $(B \cup A) \cap E^c = B \cup \{\sup A\}$, and $(B \cup A) \cap E = A \setminus \{\sup A\}$, so $*(B \cup A) \cap E^c = B \cup \{\sup A\} = *((B \cup A) \cap E) = *(A) \cap E = A \setminus \{\sup A\}$.

$$m^{*}(B \cup A) = m^{*}((B \cup A) \cap E) + m^{*}((B \cup A) \cap E^{\circ}) = m^{*}(B \cup \{\sup A\}) + m^{*}(A \setminus \{\sup A\}) = m^{*}(B) + m^{*}(A)$$

by (a).

(c) Consider the sets $E_k = E \cap [-k, k]$ for every $k \in \mathbb{N}$. Then E is a union of all E_k , $k \in \mathbb{N}$, and all E_k are bounded. If we assume that the outer measure of every E_k is zero, then the outer measure of E is also zero as of a countable union of sets of outer measure zero, so we obtain a contradiction.