Analysis III/IV, Homework 3 (Weeks 5-6)

Due date: Thursday, November 23.

Starred problems are more difficult and are not for submission.

Series and continuous functions. Outer measure.

3.1. Prove Proposition 2.14: a series $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\forall \varepsilon>0 \exists N \in \mathbb{N}$ such that $\forall n \geq N$ and $\forall m \in \mathbb{N}$ one has $\left|\sum_{k=n}^{n+m} a_{k}\right|<\varepsilon$.
3.2. (a) Show that if $\sum_{k=1}^{\infty} a_{k}$ converges then $\lim _{k \rightarrow \infty} a_{k}=0$.
(b) Let $a_{k} \geq 0$ for all $k \in \mathbb{N}$. Show that if $\sum_{k=1}^{\infty} a_{k}$ converges then $\sum_{k=1}^{\infty} a_{k}^{3}$ also converges.
(c) Does the convergence of $\sum_{k=1}^{\infty} a_{k}$ imply the convergence of $\sum_{k=1}^{\infty} a_{k}^{2}$?
(d) $(\star / 2)$ Is the assertion of (b) true without the assumption of non-negativity of all a_{k} ?
3.3. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, and let $F \subseteq[a, b]$ be closed. Show that the image $f(F)=\{y=f(x) \mid x \in F\}$ is also closed.
(b) Let $(a, b) \subset \mathbb{R}$ be a bounded interval, and let $f:(a, b) \rightarrow \mathbb{R}$ be continuous and bounded. Does this imply that f is uniformly continuous?
(c) ($\star / 2)$ Let $E \subset \mathbb{R}$ be bounded, and let $f, g: E \rightarrow \mathbb{R}$ be uniformly continuous. Is it true that $f g$ is uniformly continuous?
3.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone function. Show that the discontinuity set D of f, i.e. $D=\{x \in \mathbb{R} \mid f$ is not continuous at $x\}$, is either countable or empty.
3.5. Which of the numbers $1 / 2,2 / 3,3 / 4$ belong to the Cantor set?
3.6. (a) Let $m^{*}(A)=0$. Show that $m^{*}(B \cup A)=m^{*}(B)$ for every set $B \subset \mathbb{R}$.
(b) Let $A, B \subset \mathbb{R}$ be bounded, and assume that $\sup A \leq \inf B$. Show that $m^{*}(B \cup A)=$ $m^{*}(A)+m^{*}(B)$.
(c) Assume that $E \subset \mathbb{R}$ has positive outer measure. Show that there exists a bounded subset of E with positive outer measure.

