Analysis III/IV, Solutions 4 (Weeks 7–8)

Starred problems are more difficult and are not for submission.

Outer measure. Measurable sets

All sets below are subsets of \mathbb{R} .

4.1. Let *E* be bounded. Show that there exists a countable intersection *G* of open sets such that $E \subseteq G$ and $m^*(G) = m^*(E)$.

Solution:

First, observe that $m^*(E) < \infty$ since E is bounded. By the definition of the outer measure, for every $n \in \mathbb{N}$ there exists a countable collection of open intervals $\{I_k^n\}$ containing E such that $\sum_{k=1}^{\infty} l(I_k^n) < m^*(E) + \frac{1}{n}$. Define $U_n = \bigcup_{k=1}^{\infty} I_k^n$. Then $G = \bigcap_{k=1}^{\infty} U_n$ is the required set. Indeed, G is a countable intersection of open sets U_n , it contains E (as every U_n contains E), so $m^*(G) \ge m^*(E)$ by monotonicity of the outer measure. On the other hand, for every $n \in \mathbb{N}$ $m^*(G) \le m^*(U_n) < m^*(E) + 1/n$, so $m^*(G) \le m^*(E)$.

4.2. Show that if E_1 and E_2 are measurable, then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

Solution:

If any of the E_1 and E_2 has infinite measure, then the both sides are infinite. Thus, we can assume that both sets have finite measure (and thus all the sets involved as well). Observe that $E_1 \cup E_2$ is a disjoint union of $E_1 \setminus E_2$, $E_2 \setminus E_1$ and $E_1 \cap E_2$. Thus, by additivity of Lebesgue measure, we have

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1 \setminus E_2) + m(E_1 \cap E_2) + m(E_2 \setminus E_1) + m(E_1 \cap E_2) = m(E_1) + m(E_2),$$

since E_1 is a disjoint union of $E_1 \setminus E_2$ and $E_1 \cap E_2$.

4.3. Let *E* have finite outer measure. Show that if *E* is not measurable, then there exists an open set *U* such that $E \subseteq U$ and

$$m^*(U \setminus E) > m^*(U) - m^*(E).$$

Solution:

By Theorem 3.19, a set A is measurable if and only if for every positive ε there exists an open set U such that $m^*(U \setminus A) < \varepsilon$. Therefore, non-measurability of E implies that there exists $\varepsilon_0 > 0$ such that for every open U containing E one has $m^*(U \setminus E) > \varepsilon_0$. As in the Exercise 4.1, take an open set U such that $E \subset U$ and $m^*(U) < m^*(E) + \varepsilon_0$. Then

$$m^*(U \setminus E) > \varepsilon_0 > m^*(U) - m^*(E).$$

- **4.4.** A set $A \subseteq \mathbb{R}$ is called *nowhere dense* if every non-empty open $U \subseteq \mathbb{R}$ has an open non-empty subset $U_0 \subseteq U$ such that $U_0 \cap A = \emptyset$.
 - (a) Show that a subset of a nowhere dense set is also nowhere dense.
 - (b) Show that a finite union of nowhere dense sets is nowhere dense.
 - (c) Is a countable union of nowhere dense sets always nowhere dense?
 - (d) Which of the following sets are nowhere dense: \mathbb{Z} ; [0,1]; $\{1/n \mid n \in \mathbb{N}\} \cup \{0\}$; \mathbb{Q} ?
 - (e) Show that the Cantor set is nowhere dense.
 - (f) (\star) Is it true that every nowhere dense set has measure zero?
 - (g) (\star) Is it possible to split a closed interval into a countable union of disjoint nowhere dense sets?

Solution:

- (a) This follows from the definition: given open U, the same $U_0 \subseteq U$ which does not intersect A does not intersect any its subset either.
- (b) It is sufficient to prove that a union of two nowhere dense sets A₁ and A₂ is nowhere dense: we then can use induction to extend the result to any finite number. Let U be open. We want to find an open subset of U not intersecting A₁ ∪ A₂. Since A₁ is nowhere dense, there exists an open U₁ ⊆ U not intersecting A₁. Since A₂ is nowhere dense and U₁ is open, there exists an open U₂ ⊆ U₁ not intersecting A₂. Thus, U₂ ∩ A₂ = Ø, and U₂ ∩ A₁ = Ø since U₁ ∩ A₁ = Ø and U₂ ⊆ U₁. Therefore, we found open U₂ ⊆ U such that U₂ ∩ (A₁ ∪ A₂) = Ø, so A₁ ∪ A₂ is nowhere dense.
- (c) The easiest counterexample is \mathbb{Q} . Of course it is not nowhere dense (since every open interval, and thus every open set, contains a rational number), and it is a countable union of a single point sets (which are obviously nowhere dense: for every open U the set $U \setminus \{x\}$ is open and infinite, and thus non-empty).
- (d) \mathbb{Z} is nowhere dense: for every open U the set $U_0 = U \setminus \mathbb{Z}$ is open and infinite, and thus nonempty. Alternatively, we could assume that there exists $n \in U \cap \mathbb{Z}$ (if it does not then take $U_0 = U$), then U contains an interval $(n - \varepsilon, n + \varepsilon)$, so we can take $U_0 = (n, \min(n + \varepsilon, n + 1))$.

[0,1] is not nowhere dense: it contains an open interval (0,1), and thus for U = (0,1) the set $U \setminus [0,1]$ is empty.

The set $A = \{1/n \mid n \in \mathbb{N}\} \cup \{0\}$ is nowhere dense: it is closed and countable, so for every open U the set $U_0 = U \setminus A$ is open and uncountable, and thus nonempty. Alternatively, one could use arguments similar to ones for \mathbb{Z} .

Finally, \mathbb{Q} is not nowhere dense, see the exercise above.

- (e) Denote by G the complement of C in [0, 1]. We know that G is open and has measure 1.
- Take any open U. If $U \setminus (0, 1)$ is not empty, then we can take an open subset $U_0 \subset U \setminus (0, 1)$ and we are done, so we can assume that $U \subseteq (0, 1)$. Denote $U_0 = U \cap G$. U_0 is open and has empty intersection with C (as it is a subset of G), so we are only left to prove that U_0 is not empty. Suppose U_0 is empty, this means that U and G are disjoint. Then $m(U \cup G) = m(U) + m(G) = m(u) + 1 > 1$ since every non-empty open set has positive measure (and both sets are measurable). On the other hand, $U \cup G \subseteq (0, 1)$, so $m(U \cup G) \leq 1$, which leads to a contradiction.

Actually, the reasoning above proves a stronger statement: every *closed* set of *measure zero* is nowhere dense. Note that both assumptions are essential.