Analysis III/IV, Solutions 4 (Weeks 7-8)

Starred problems are more difficult and are not for submission.

Outer measure. Measurable sets

All sets below are subsets of \mathbb{R}.
4.1. Let E be bounded. Show that there exists a countable intersection G of open sets such that $E \subseteq G$ and $m^{*}(G)=m^{*}(E)$.

Solution:

First, observe that $m^{*}(E)<\infty$ since E is bounded. By the definition of the outer measure, for every $n \in \mathbb{N}$ there exists a countable collection of open intervals $\left\{I_{k}^{n}\right\}$ containing E such that $\sum_{k=1}^{\infty} l\left(I_{k}^{n}\right)<m^{*}(E)+\frac{1}{n}$. Define $U_{n}=\bigcup_{k=1}^{\infty} I_{k}^{n}$. Then $G=\bigcap_{k=1}^{\infty} U_{n}$ is the required set. Indeed, G is a countable intersection of open sets U_{n}, it contains E (as every U_{n} contains E), so $m^{*}(G) \geq m^{*}(E)$ by monotonicity of the outer measure. On the other hand, for every $n \in \mathbb{N} m^{*}(G) \leq m^{*}\left(U_{n}\right)<m^{*}(E)+1 / n$, so $m^{*}(G) \leq m^{*}(E)$.
4.2. Show that if E_{1} and E_{2} are measurable, then

$$
m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)
$$

Solution:

If any of the E_{1} and E_{2} has infinite measure, then the both sides are infinite. Thus, we can assume that both sets have finite measure (and thus all the sets involved as well). Observe that $E_{1} \cup E_{2}$ is a disjoint union of $E_{1} \backslash E_{2}, E_{2} \backslash E_{1}$ and $E_{1} \cap E_{2}$. Thus, by additivity of Lebesgue measure, we have
$m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1} \backslash E_{2}\right)+m\left(E_{1} \cap E_{2}\right)+m\left(E_{2} \backslash E_{1}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)$,
since E_{1} is a disjoint union of $E_{1} \backslash E_{2}$ and $E_{1} \cap E_{2}$.
4.3. Let E have finite outer measure. Show that if E is not measurable, then there exists an open set U such that $E \subseteq U$ and

$$
m^{*}(U \backslash E)>m^{*}(U)-m^{*}(E)
$$

Solution:

By Theorem 3.19, a set A is measurable if and only if for every positive ε there exists an open set U such that $m^{*}(U \backslash A)<\varepsilon$. Therefore, non-measurability of E implies that there exists $\varepsilon_{0}>0$ such that for every open U containing E one has $m^{*}(U \backslash E)>\varepsilon_{0}$. As in the Exercise 4.1, take an open set U such that $E \subset U$ and $m^{*}(U)<m^{*}(E)+\varepsilon_{0}$. Then

$$
m^{*}(U \backslash E)>\varepsilon_{0}>m^{*}(U)-m^{*}(E)
$$

4.4. A set $A \subseteq \mathbb{R}$ is called nowhere dense if every non-empty open $U \subseteq \mathbb{R}$ has an open non-empty subset $U_{0} \subseteq U$ such that $U_{0} \cap A=\emptyset$.
(a) Show that a subset of a nowhere dense set is also nowhere dense.
(b) Show that a finite union of nowhere dense sets is nowhere dense.
(c) Is a countable union of nowhere dense sets always nowhere dense?
(d) Which of the following sets are nowhere dense: $\mathbb{Z} ; \quad[0,1] ;\{1 / n \mid n \in \mathbb{N}\} \cup\{0\} ; \mathbb{Q}$?
(e) Show that the Cantor set is nowhere dense.
(f) (\star) Is it true that every nowhere dense set has measure zero?
$(\mathrm{g})(\star)$ Is it possible to split a closed interval into a countable union of disjoint nowhere dense sets?

Solution:

(a) This follows from the definition: given open U, the same $U_{0} \subseteq U$ which does not intersect A does not intersect any its subset either.
(b) It is sufficient to prove that a union of two nowhere dense sets A_{1} and A_{2} is nowhere dense: we then can use induction to extend the result to any finite number.
Let U be open. We want to find an open subset of U not intersecting $A_{1} \cup A_{2}$. Since A_{1} is nowhere dense, there exists an open $U_{1} \subseteq U$ not intersecting A_{1}. Since A_{2} is nowhere dense and U_{1} is open, there exists an open $U_{2} \subseteq U_{1}$ not intersecting A_{2}. Thus, $U_{2} \cap A_{2}=\emptyset$, and $U_{2} \cap A_{1}=\emptyset$ since $U_{1} \cap A_{1}=\emptyset$ and $U_{2} \subseteq U_{1}$. Therefore, we found open $U_{2} \subseteq U$ such that $U_{2} \cap\left(A_{1} \cup A_{2}\right)=\emptyset$, so $A_{1} \cup A_{2}$ is nowhere dense.
(c) The easiest counterexample is \mathbb{Q}. Of course it is not nowhere dense (since every open interval, and thus every open set, contains a rational number), and it is a countable union of a single point sets (which are obviously nowhere dense: for every open U the set $U \backslash\{x\}$ is open and infinite, and thus non-empty).
(d) \mathbb{Z} is nowhere dense: for every open U the set $U_{0}=U \backslash \mathbb{Z}$ is open and infinite, and thus nonempty. Alternatively, we could assume that there exists $n \in U \cap \mathbb{Z}$ (if it does not then take $U_{0}=U$), then U contains an interval $(n-\varepsilon, n+\varepsilon)$, so we can take $U_{0}=(n, \min (n+\varepsilon, n+1))$.
$[0,1]$ is not nowhere dense: it contains an open interval $(0,1)$, and thus for $U=(0,1)$ the set $U \backslash[0,1]$ is empty.

The set $A=\{1 / n \mid n \in \mathbb{N}\} \cup\{0\}$ is nowhere dense: it is closed and countable, so for every open U the set $U_{0}=U \backslash A$ is open and uncountable, and thus nonempty. Alternatively, one could use arguments similar to ones for \mathbb{Z}.

Finally, \mathbb{Q} is not nowhere dense, see the exercise above.
(e) Denote by G the complement of C in $[0,1]$. We know that G is open and has measure 1 .

Take any open U. If $U \backslash(0,1)$ is not empty, then we can take an open subset $U_{0} \subset U \backslash(0,1)$ and we are done, so we can assume that $U \subseteq(0,1)$. Denote $U_{0}=U \cap G$. U_{0} is open and has empty intersection with C (as it is a subset of G), so we are only left to prove that U_{0} is not empty.
Suppose U_{0} is empty, this means that U and G are disjoint. Then $m(U \cup G)=m(U)+$ $m(G)=m(u)+1>1$ since every non-empty open set has positive measure (and both sets are measurable). On the other hand, $U \cup G \subseteq(0,1)$, so $m(U \cup G) \leq 1$, which leads to a contradiction.
Actually, the reasoning above proves a stronger statement: every closed set of measure zero is nowhere dense. Note that both assumptions are essential.

