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Analysis III/IV, Solutions 4 (Weeks 7–8)

Starred problems are more difficult and are not for submission.

Outer measure. Measurable sets

All sets below are subsets of R.

4.1. Let E be bounded. Show that there exists a countable intersection G of open sets such that
E ⊆ G and m∗(G) = m∗(E).

Solution:

First, observe that m∗(E) < ∞ since E is bounded. By the definition of the outer measure, for
every n ∈ N there exists a countable collection of open intervals {Ink } containing E such that
∞∑
k=1

l(Ink ) < m∗(E)+ 1
n . Define Un =

∞⋃
k=1

Ink .Then G =
∞⋂
k=1

Un is the required set. Indeed, G is a count-

able intersection of open sets Un, it contains E (as every Un contains E), so m∗(G) ≥ m∗(E) by mono-
tonicity of the outer measure. On the other hand, for every n ∈ N m∗(G) ≤ m∗(Un) < m∗(E) + 1/n,
so m∗(G) ≤ m∗(E).

4.2. Show that if E1 and E2 are measurable, then

m(E1 ∪ E2) + m(E1 ∩ E2) = m(E1) + m(E2).

Solution:

If any of the E1 and E2 has infinite measure, then the both sides are infinite. Thus, we can assume
that both sets have finite measure (and thus all the sets involved as well). Observe that E1 ∪E2 is a
disjoint union of E1 \ E2, E2 \ E1 and E1 ∩ E2. Thus, by additivity of Lebesgue measure, we have

m(E1 ∪E2) +m(E1 ∩E2) = m(E1 \E2) +m(E1 ∩E2) +m(E2 \E1) +m(E1 ∩E2) = m(E1) +m(E2),

since E1 is a disjoint union of E1 \ E2 and E1 ∩ E2.

4.3. Let E have finite outer measure. Show that if E is not measurable, then there exists an open
set U such that E ⊆ U and

m∗(U \ E) > m∗(U)−m∗(E).

Solution:

By Theorem 3.19, a set A is measurable if and only if for every positive ε there exists an open set
U such that m∗(U \ A) < ε. Therefore, non-measurability of E implies that there exists ε0 > 0 such
that for every open U containing E one has m∗(U \E) > ε0. As in the Exercise 4.1, take an open set
U such that E ⊂ U and m∗(U) < m∗(E) + ε0. Then

m∗(U \ E) > ε0 > m∗(U)−m∗(E).



4.4. A set A ⊆ R is called nowhere dense if every non-empty open U ⊆ R has an open non-empty
subset U0 ⊆ U such that U0 ∩A = ∅.

(a) Show that a subset of a nowhere dense set is also nowhere dense.

(b) Show that a finite union of nowhere dense sets is nowhere dense.

(c) Is a countable union of nowhere dense sets always nowhere dense?

(d) Which of the following sets are nowhere dense: Z; [0, 1]; {1/n |n ∈ N} ∪ {0}; Q?

(e) Show that the Cantor set is nowhere dense.

(f) (?) Is it true that every nowhere dense set has measure zero?

(g) (?) Is it possible to split a closed interval into a countable union of disjoint nowhere
dense sets?

Solution:

(a) This follows from the definition: given open U , the same U0 ⊆ U which does not intersect A
does not intersect any its subset either.

(b) It is sufficient to prove that a union of two nowhere dense sets A1 and A2 is nowhere dense: we
then can use induction to extend the result to any finite number.

Let U be open. We want to find an open subset of U not intersecting A1 ∪ A2. Since A1 is
nowhere dense, there exists an open U1 ⊆ U not intersecting A1. Since A2 is nowhere dense
and U1 is open, there exists an open U2 ⊆ U1 not intersecting A2. Thus, U2 ∩ A2 = ∅, and
U2 ∩ A1 = ∅ since U1 ∩ A1 = ∅ and U2 ⊆ U1. Therefore, we found open U2 ⊆ U such that
U2 ∩ (A1 ∪A2) = ∅, so A1 ∪A2 is nowhere dense.

(c) The easiest counterexample is Q. Of course it is not nowhere dense (since every open interval,
and thus every open set, contains a rational number), and it is a countable union of a single
point sets (which are obviously nowhere dense: for every open U the set U \ {x} is open and
infinite, and thus non-empty).

(d) Z is nowhere dense: for every open U the set U0 = U \Z is open and infinite, and thus nonempty.
Alternatively, we could assume that there exists n ∈ U ∩ Z (if it does not then take U0 = U),
then U contains an interval (n− ε, n + ε), so we can take U0 = (n,min(n + ε, n + 1)).

[0, 1] is not nowhere dense: it contains an open interval (0, 1), and thus for U = (0, 1) the set
U \ [0, 1] is empty.

The set A = {1/n |n ∈ N} ∪ {0} is nowhere dense: it is closed and countable, so for every open
U the set U0 = U \ A is open and uncountable, and thus nonempty. Alternatively, one could
use arguments similar to ones for Z.

Finally, Q is not nowhere dense, see the exercise above.

(e) Denote by G the complement of C in [0, 1]. We know that G is open and has measure 1.

Take any open U . If U \ (0, 1) is not empty, then we can take an open subset U0 ⊂ U \ (0, 1) and
we are done, so we can assume that U ⊆ (0, 1). Denote U0 = U ∩G. U0 is open and has empty
intersection with C (as it is a subset of G), so we are only left to prove that U0 is not empty.

Suppose U0 is empty, this means that U and G are disjoint. Then m(U ∪ G) = m(U) +
m(G) = m(u) + 1 > 1 since every non-empty open set has positive measure (and both sets are
measurable). On the other hand, U∪G ⊆ (0, 1), so m(U∪G) ≤ 1, which leads to a contradiction.

Actually, the reasoning above proves a stronger statement: every closed set of measure zero is
nowhere dense. Note that both assumptions are essential.


