Michaelmas 2017

Analysis III/IV, Homework 4 (Weeks 7–8)

Due date: Thursday, December 7.

Starred problems are more difficult and are not for submission.

Outer measure. Measurable sets

All sets below are subsets of \mathbb{R} .

- **4.1.** Let *E* be bounded. Show that there exists a countable intersection *G* of open sets such that $E \subseteq G$ and $m^*(G) = m^*(E)$.
- **4.2.** Show that if E_1 and E_2 are measurable, then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

4.3. Let *E* have finite outer measure. Show that if *E* is not measurable, then there exists an open set *U* such that $E \subseteq U$ and

$$m^*(U \setminus E) > m^*(U) - m^*(E).$$

- **4.4.** A set $A \subseteq \mathbb{R}$ is called *nowhere dense* if every open $U \subseteq \mathbb{R}$ has an open non-empty subset $U_0 \subseteq U$ such that $U_0 \cap A = \emptyset$.
 - (a) Show that a subset of a nowhere dense set is also nowhere dense.
 - (b) Show that a finite union of nowhere dense sets is nowhere dense.
 - (c) Is a countable union of nowhere dense sets always nowhere dense?
 - (d) Which of the following sets are nowhere dense: \mathbb{Z} ; [0,1]; $\{1/n \mid n \in \mathbb{N}\} \cup \{0\}$; \mathbb{Q} ?
 - (e) Show that the Cantor set is nowhere dense.
 - (f) (\star) Is it true that every nowhere dense set has measure zero?
 - (g) (\star) Is it possible to split a closed interval into a countable union of disjoint nowhere dense sets?