Analysis III/IV, Solutions 5 (Weeks 9-10)

Measurable functions

All sets below are subsets of \mathbb{R}.
5.1. Let E be measurable, and let $f: E \rightarrow \mathbb{R}$ be monotone. Show that f is measurable.

Solution:

We may assume that f is increasing. Take any $c \in \mathbb{R}$, and let $b=\sup \{x \in E \mid f(x) \leq c\} \in \mathbb{R} \cup\{\infty\}$. Then the full preimage of $(-\infty, c]$ is the intersection $E \cap(-\infty, b)$ (or $E \cap(-\infty, b])$ which is measurable as an intersection of two measurable sets. Thus, f is measurable.
5.2. Give an example of a non-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that all sets $\{x \in \mathbb{R} \mid f(x)=c\}$ are measurable.
Hint: construct a non-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that every set $\{x \in \mathbb{R} \mid f(x)=c\}$ consists of at most one point.

Solution:

Let $X \subset[0,1]$ be non-measurable. Define

$$
f(x)= \begin{cases}x & \text { if } x<0 \\ x & \text { if } x \in[0,1] \backslash X \\ x+1 & \text { if } x \in X \\ x+1 & \text { if } x>1\end{cases}
$$

This function takes every value at most once, and the preimage of an interval $(1, \infty)$ is $X \cup(1, \infty)$ which is non-measurable.
5.3. Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and that $f(x)>0$ for all $x \in \mathbb{R}$. Prove that $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{1}{f(x)}$ is measurable.
Solution:

For $c \leq 0$, the preimage of $(-\infty, c)$ is empty. Given $c>0, g(x)<c$ is equivalent to $f(x)>\frac{1}{c}$, and the set of $x \in \mathbb{R}$ such that $f(x)>\frac{1}{c}$ is measurable due to measurability of f.
5.4. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous.
(a) Show that if $f=g$ a.e. on $[a, b]$ then $f \equiv g$.
(b) Is the assertion of (a) true if f, g are defined on an arbitrary measurable subset of \mathbb{R} ?

Solution:
(a) Suppose there exists $x \in[a, b]$ such that $f(x) \neq g(x)$, we may assume $f(x)<g(x)$. By continuity of f and g, there exists $\delta>0$ such that for every x^{\prime} satisfying $\left|x-x^{\prime}\right|<\delta$ one has $\left|f(x)-f\left(x^{\prime}\right)\right|<(g(x)-f(x)) / 2$ and $\left|g(x)-g\left(x^{\prime}\right)\right|<(g(x)-f(x)) / 2$. Then, by the triangle inequality, $f\left(x^{\prime}\right)<g\left(x^{\prime}\right)$ for every x^{\prime} satisfying $\left|x-x^{\prime}\right|<\delta$, so $f \neq g$ on an interval, which of course has a positive measure.
(b) Take any E of measure zero. Then any two continuous functions are equal a.e. on E, so the assertion of (a) is obviously wrong. Though, it is a good exercise to formulate necessary and sufficient conditions for E to satisfy the assertion of (a).
5.5. Let $f=\sum_{k=1}^{n} c_{k} \chi_{E_{k}}$ be a simple function, where $c_{k} \in \mathbb{R}$ and $\chi_{E_{k}}$ are indicator functions of some mutually disjoint sets $E_{k} \subseteq \mathbb{R}$. Show that f is measurable if and only if every E_{k} is measurable.

Solution:

Note that, in constrast to the definition given in lectures, here "a simple function" means just a function taking finitely many values.
If the function is measurable, then every E_{k} is measurable as a preimage of a single point interval. Conversely, the preimage of $(-\infty, c)$ is precisely the union of those E_{k} for which $c_{k}<c$, and thus it is measurable in the case all E_{k} are measurable.
5.6. Let $f: E \rightarrow \mathbb{R}, E$ is measurable. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=0$ for $x \notin E$ and $g(x)=f(x)$ if $x \in E$. Show that f is measurable if and only if g is measurable.

Solution:

Given $c \in \mathbb{R}$, the preimage $g^{-1}((-\infty, c))$ can be expressed in the following way:

$$
g^{-1}((-\infty, c))= \begin{cases}f^{-1}((-\infty, c)) & \text { if } c \leq 0 ; \\ f^{-1}((-\infty, c)) \cup(\mathbb{R} \backslash E) & \text { if } c>0 .\end{cases}
$$

Since E (and thus $\mathbb{R} \backslash E$) is measurable, the measurability of the sets above is equivalent to the measurability of f.
5.7. (a) Let $f, g: E \rightarrow \mathbb{R}$ be measurable functions. Show that $\max (f, g)$ is measurable.
(b) Let $\left\{f_{n}: E \rightarrow \mathbb{R}\right\}$ be a sequence of measurable functions, define a function $\sup f_{n}: E \rightarrow \mathbb{R}$ by $\left(\sup f_{n}\right)(x)=\sup \left\{f_{n}(x) \mid n \in \mathbb{N}\right\}$. Is $\sup f_{n}$ always measurable?

Solution:

(a) Given $c \in \mathbb{R}, \max (f, g)(x)<c$ is equivalent to $f(x)<c$ and $g(x)<c$ simultaneously. Thus, $\{x \in \mathbb{R} \mid \max (f, g)(x)<c\}=\{x \in \mathbb{R} \mid f(x)<c\} \cap\{x \in \mathbb{R} \mid g(x)<c\}$ and thus is measurable as an intersection of two measurable sets.
(b) This is true, and the proof is almost identical to (a):

$$
\left\{x \in \mathbb{R} \mid\left(\sup f_{n}\right)(x) \leq c\right\}=\bigcap_{n=1}^{\infty}\left\{x \in \mathbb{R} \mid f_{n}(x) \leq c\right\}
$$

and thus is measurable.

