Analysis III/IV, Homework 5 (Weeks 9–10)

Measurable functions

All sets below are subsets of \mathbb{R} .

- **5.1.** Let *E* be measurable, and let $f: E \to \mathbb{R}$ be monotone. Show that *f* is measurable.
- **5.2.** Give an example of a non-measurable function $f : \mathbb{R} \to \mathbb{R}$ such that all sets $\{x \in \mathbb{R} \mid f(x) = c\}$ are measurable. *Hint:* construct a non-measurable function $f : \mathbb{R} \to \mathbb{R}$ such that every set $\{x \in \mathbb{R} \mid f(x) = c\}$ consists of at most one point.
- **5.3.** Assume that a function $f : \mathbb{R} \to \mathbb{R}$ is measurable and that f(x) > 0 for all $x \in \mathbb{R}$. Prove that $g : \mathbb{R} \to \mathbb{R}, g(x) = \frac{1}{f(x)}$ is measurable.
- **5.4.** Let $f, g : [a, b] \to \mathbb{R}$ be continuous.
 - (a) Show that if f = g a.e. on [a, b] then $f \equiv g$.
 - (b) Is the assertion of (a) true if f, g are defined on an arbitrary measurable subset of \mathbb{R} ?
- **5.5.** Let $f = \sum_{k=1}^{n} c_k \chi_{E_k}$ be a simple function, where $c_k \in \mathbb{R}$ and χ_{E_k} are indicator functions of some mutually disjoint sets $E_k \subseteq \mathbb{R}$. Show that f is measurable if and only if every E_k is measurable.
- **5.6.** Let $f: E \to \mathbb{R}$, E is measurable. Define $g: \mathbb{R} \to \mathbb{R}$ by g(x) = 0 for $x \notin E$ and g(x) = f(x) if $x \in E$. Show that f is measurable if and only if g is measurable.
- **5.7.** (a) Let $f, g: E \to \mathbb{R}$ be measurable functions. Show that $\max(f, g)$ is measurable.
 - (b) Let $\{f_n : E \to \mathbb{R}\}$ be a sequence of measurable functions, define a function $\sup f_n : E \to \mathbb{R}$ by $(\sup f_n)(x) = \sup\{f_n(x) \mid n \in \mathbb{N}\}$. Is $\sup f_n$ always measurable?