## Analysis III/IV, Homework 5 (Weeks 9-10)

## Measurable functions

All sets below are subsets of $\mathbb{R}$.
5.1. Let $E$ be measurable, and let $f: E \rightarrow \mathbb{R}$ be monotone. Show that $f$ is measurable.
5.2. Give an example of a non-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that all sets $\{x \in \mathbb{R} \mid f(x)=c\}$ are measurable.
Hint: construct a non-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that every set $\{x \in \mathbb{R} \mid f(x)=c\}$ consists of at most one point.
5.3. Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and that $f(x)>0$ for all $x \in \mathbb{R}$. Prove that $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{1}{f(x)}$ is measurable.
5.4. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous.
(a) Show that if $f=g$ a.e. on $[a, b]$ then $f \equiv g$.
(b) Is the assertion of (a) true if $f, g$ are defined on an arbitrary measurable subset of $\mathbb{R}$ ?
5.5. Let $f=\sum_{k=1}^{n} c_{k} \chi_{E_{k}}$ be a simple function, where $c_{k} \in \mathbb{R}$ and $\chi_{E_{k}}$ are indicator functions of some mutually disjoint sets $E_{k} \subseteq \mathbb{R}$. Show that $f$ is measurable if and only if every $E_{k}$ is measurable.
5.6. Let $f: E \rightarrow \mathbb{R}, E$ is measurable. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=0$ for $x \notin E$ and $g(x)=f(x)$ if $x \in E$. Show that $f$ is measurable if and only if $g$ is measurable.
5.7. (a) Let $f, g: E \rightarrow \mathbb{R}$ be measurable functions. Show that $\max (f, g)$ is measurable.
(b) Let $\left\{f_{n}: E \rightarrow \mathbb{R}\right\}$ be a sequence of measurable functions, define a function sup $f_{n}: E \rightarrow \mathbb{R}$ by $\left(\sup f_{n}\right)(x)=\sup \left\{f_{n}(x) \mid n \in \mathbb{N}\right\}$. Is sup $f_{n}$ always measurable?

