Analysis III/IV

Please see Sections I.1–I.3 of Real Analysis by Royden and Fitzpatrick for details.

1 Real numbers

1.1 Ordered fields

Definition 1.1 (Reminder). Definition of a field: axioms of a field.

Exercise. Let \mathbb{F} be a field.

- (a) Show that $0 \in \mathbb{F}$ is unique.
- (b) Show that $1 \in \mathbb{F}$ is unique.
- (c) Show that for every $a \in \mathbb{F}$ its negative -a and inverse a^{-1} are unique.
- (d) Show that $(-1) \cdot a = -a$ and $a \cdot 0 = 0$ for every $a \in \mathbb{F}$.

Example 1.2. Field $\mathbb{F}_2 = \{0, 1\}; \mathbb{Q}$.

Definition 1.3. An ordered field is a field \mathbb{F} with a subset $\mathbb{P} \subset \mathbb{F}$ (elements of which are called *positive numbers*) satisfying the following two properties:

- (1) If $a, b \in \mathbb{P}$ then $a + b \in \mathbb{P}$ and $a \cdot b \in \mathbb{P}$.
- (2) For every $a \in \mathbb{F}$ exactly one of the following holds: either $a \in \mathbb{P}$, or a = 0, or $-a \in \mathbb{P}$.

We say that a > b (or b < a) if $a - b \in \mathbb{P}$, and $a \ge b$ (or $b \le a$) if a > b or a = b.

Exercise. Show that $1 \in \mathbb{P}$.

Definition 1.4 (Reminder). Open and closed intervals.

Definition 1.5 (Reminder). Upper and lower bounds of a set, supremum and infimum. Bounded set.

Definition 1.6 (Completeness Axiom). \mathbb{R} is an ordered field satisfying the following *completeness axiom*: every bounded from above subset of \mathbb{R} has a supremum.

Exercise. Show that every bounded from below subset A of \mathbb{R} has infimum, and $\inf A = -\sup(-A)$.

Definition 1.7 (Reminder). Metric space.

Example 1.8. d(x,y) = |x - y| is a metric on \mathbb{R} .

1.2 $\mathbb{N}, \mathbb{Z} \text{ and } \mathbb{Q}$

Definition 1.9. $A \subseteq \mathbb{R}$ is *inductive* if

- (1) $1 \in A;$
- (2) $\forall a \in A \ a+1 \in A$.

Example 1.10. \mathbb{R} is inductive.

Definition 1.11. The set of *natural numbers* \mathbb{N} is the intersection of all inductive subsets of \mathbb{R} .

Properties of \mathbb{N} :

- \mathbb{N} is not empty;
- \mathbb{N} is inductive;
- $\mathbb{N} \subseteq \mathbb{P}$.

Theorem 1.12 (Mathematical Induction). Let for every $n \in \mathbb{N}$ S(n) denote some statement. Suppose that S(1) is true, and for every $k \in \mathbb{N}$ the statement S(k) implies S(k+1). Then S(n) is true for every $n \in \mathbb{N}$.

Exercise 1.13. (a) Let $a, b \in \mathbb{N}$. Show that $a + b \in \mathbb{N}$, $ab \in \mathbb{N}$.

- (b) Let $a \in \mathbb{N}$, a > 1. Show that $a 1 \in \mathbb{N}$.
- (c) Let $a, b \in \mathbb{N}$, a > b. Show that $a b \in \mathbb{N}$.
- (d) Let $n \in \mathbb{N}$. Show that there is no natural number m such that n < m < n + 1.

Theorem 1.14. Every non-empty subset of \mathbb{N} has a smallest element.

Proposition 1.15 (Archimedian Property). For every a, b > 0 there exists $n \in \mathbb{N}$ such that na > b.

Definition 1.16. Integer numbers $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup (-\mathbb{N})$, rational numbers $\mathbb{Q} = \{m/n \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$, irrational numbers $\mathbb{R} \setminus \mathbb{Q}$.

Example 1.17. \mathbb{Q} is an ordered field.

Proposition 1.18. For every $a, b \in \mathbb{R}$, a < b, there exists $c \in \mathbb{Q}$ such that a < c < b.

1.3 Countable and uncountable sets

Definition 1.19. • Two sets A and B are *equipotent* if there exists a bijection between them. Notation: |A| = |B|.

- A set A is *finite* if it is equipotent to a bounded subset $\{1, 2, ..., n\}$ of N. Notation: |A| = n. A is *infinite* otherwise.
- A set A is *countably infinite* if it is equipotent to \mathbb{N} .
- A set A is *countable* if it is either finite or countably infinite.
- A set A is *uncountable* if it is not countable.

Exercise. Show that every ordered field is infinite.

Example 1.20. $2\mathbb{N}$ is countable.

Exercise. Show that \mathbb{Z} and $\mathbb{N} \setminus \{2017\}$ are countable.

Proposition 1.21. A non-empty subset of a countable set is countable.

Proposition 1.22. A non-empty set B is countable if and only if there exists a surjective map $A \to B$ for some countable set A.

Proposition 1.23. Let X and Y be countable. Then $X \times Y$ is countable.

Corollary 1.24. \mathbb{Q} is countable.

Exercise. • A union of a finite number of countable sets is countable.

- A countable union of finite sets is countable.
- A countable union of countable sets is countable.

Proposition 1.25. An intersection of a countable collection of closed nested intervals is not empty.

Corollary 1.26. Let $a, b \in \mathbb{R}$, a < b. Then [a, b] is uncountable.

Corollary 1.27. \mathbb{R} is uncountable.

Exercise. Let $\{I_n\}$ be a system of closed nested intervals. Show that their intersection is a single point if and only if for every positive ε there exists an $n \in \mathbb{N}$ such that the length of I_n is less than ε .

Definition. Given a set X, the set of all subsets of X is denoted by P(X) or 2^X .

Exercise. Show that $P(\mathbb{N})$ is uncountable.

1.4 Open and closed subsets of \mathbb{R}

All sets are subsets of \mathbb{R} .

Definition 1.28 (Reminder). A subset $A \subseteq \mathbb{R}$ is open if $\forall a \in A \exists \varepsilon > 0$ s.t. $(a - \varepsilon, a + \varepsilon) \subseteq A$.

Example 1.29. Open interval is open.

Example 1.30. • \mathbb{R} and \emptyset are open.

- A finite intersection of open sets is open.
- A union of any collection of open sets is open.

Example 1.31. A countable intersection of open sets may not be open: $\bigcap_{n \in \mathbb{N}} (-1/n, 1/n) = \{0\}.$

Proposition 1.32. Every non-empty open set is a union of a countable set of mutually disjoint open intervals.

Definition 1.33. Let A be a set. $x \in \mathbb{R}$ is a *closure point* (or a *point of closure*) of A if for $\forall \varepsilon > 0$ $(x - \varepsilon, x + \varepsilon) \cap A \neq \emptyset$. The *closure* \overline{A} of A is the set of all closure points of A. A is *closed* if $\overline{A} = A$.

Proposition 1.34. For every set A its closure \overline{A} is closed. Moreover, \overline{A} is a subset of any closed set containing A.

Proposition 1.35. *A is closed if and only if its complement* $\mathbb{R} \setminus A$ *is open.*

Corollary 1.36. A union of a finite number of closed sets is closed. An intersection of any collection of closed sets is closed.

Exercise (1.37'). A closed bounded set contains its infimum and supremum.

Definition 1.37 (Reminder). An open cover of a set A is a collection $\{U_{\lambda}\}_{\lambda \in \Lambda}$ of open sets such that $A \subseteq \bigcup_{\lambda \in \Lambda} U_{\lambda}$. A is compact if every open cover of A has a finite subcover.

Theorem 1.38 (Heine – Borel Theorem). A subset of \mathbb{R} is compact if and only if it is closed and bounded.

1.5 Borel sets in \mathbb{R}

Proposition 1.39 (Nested Sets Theorem). An intersection of a countable collection of closed nested sets is non-empty.

Definition 1.40. Let X be a set. A collection \mathcal{A} of subsets of X is called a σ -algebra of subsets of X is it satisfies the following:

- (1) $\emptyset \in \mathcal{A};$
- (2) if $A \in \mathcal{A}$ then $X \setminus A \in \mathcal{A}$;
- (3) a union of a countable collection of elements of \mathcal{A} also belongs to \mathcal{A} .

Definition 1.41. Borel sets are elements of the smallest σ -algebra \mathcal{B} containing all open sets.

Example. \mathcal{B} contains: all open and closed sets; countable unions of closed sets.

Exercise. (a) Every open set is a countable union of closed sets.

(b) \mathcal{B} is the smallest σ -algebra containing all closed sets.

2 Sequences and continuity in \mathbb{R}

2.1 Sequences in \mathbb{R}

Definition 2.1 (Reminder). A sequence $\{a_i\}$ in \mathbb{R} is a map $f : \mathbb{N} \to \mathbb{R}$, $f(i) = a_i$. A sequence is bounded if the set of its elements is bounded. A sequence is *increasing* (*decreasing*) if $a_i \leq a_{i+1}$ ($a_i \geq a_{i+1}$ respectively) for every $i \in \mathbb{N}$, monotone if it is either increasing or decreasing.

Definition 2.2 (Reminder). A sequence $\{a_n\}$ converges to $a \in \mathbb{R}$ if $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ $\forall n > N$. Notation: $\lim_{n \to \infty} a_n = a$.

Exercise. Let $\{a_n\}$ converge. Then the sequence is bounded, and limit is unique.

Proposition 2.3 (Reminder). Let $\{a_n\}$ be monotone. Then it converges if and only if it is bounded.

Theorem 2.4 (Bolzano – Weierstrass Theorem). Every bounded sequence in \mathbb{R} has a converging subsequence.

Exercise. $\lim_{n\to\infty} a_n = a$ if and only if every subsequence of $\{a_n\}$ converges to a.

Definition 2.5. *a* is an accumulation point of $\{a_n\}$ if $\forall \varepsilon > 0 \forall N \in \mathbb{N} \exists n > N$ s.t. $|a_n - a| < \varepsilon$.

Exercise. Show that a is an accumulation point of $\{a_n\}$ if and only if there exists a subsequence of $\{a_n\}$ converging to a.

Definition 2.6 (Reminder). $\{a_n\}$ is a Cauchy sequence if $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ s.t. $|a_n - a_m| < \varepsilon \forall m, n > N$.

Theorem 2.7 (Reminder). A sequence of real numbers converges if and only if it is a Cauchy sequence.

Definition 2.8 (Reminder). Convergence to $\pm \infty$. sup and inf of unbounded sets.

Definition 2.9. A *limit superior* of $\{a_n\}$ is defined by $\limsup a_n = \lim_{n \to \infty} \sup\{a_k \mid k \ge n\}$. A *limit inferior* of $\{a_n\}$ is defined by $\liminf a_n = \lim_{n \to \infty} \inf\{a_k \mid k \ge n\}$.

Example 2.10. • If $\{a_n\}$ is unbounded from above (below) then $\limsup a_n = +\infty$ ($\liminf a_n = -\infty$ respectively).

- Let $a_n = (-1)^n$. Then $\limsup a_n = 1$, $\liminf a_n = -1$.
- Let $\{a_n\}$ converge. Then $\limsup a_n = \liminf a_n = \lim a_n$

Proposition 2.11. Both limit superior and limit inferior always exist, and they are equal to the largest (smallest, respectively) accumulation point of $\{a_n\}$.

Example 2.12. Let $P(z) = \sum_{n=0}^{\infty} a_n z^n$ be a complex power series, $a_n \neq 0$. Then its convergence radius R exists and $\frac{1}{R} = \limsup \left| \frac{a_{n+1}}{a_n} \right|$.

Exercise. • Show that $\limsup a_n = -\liminf(-a_n)$.

• Let $a_n \leq b_n$ for every $n \in \mathbb{N}$. Show that $\limsup a_n \leq \limsup b_n$.

Definition 2.13 (Reminder). Converging series.

Proposition 2.14. Show that $\sum a_k$ converges if and only if $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that $\left| \sum_{k=n}^{n+m} a_k \right| < \varepsilon$ $\forall n > N, m \ge 0$.

2.2 Continuous functions

Definition 2.15 (Reminder). Let $E \subseteq \mathbb{R}$. A function $f : E \to \mathbb{R}$ is continuous at $x \in E$ if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. $|f(x') - f(x)| < \varepsilon \forall x' \in E$ satisfying $|x' - x| < \delta$. f is continuous on E if it continuous at every $x \in E$.

Proposition 2.16 (Reminder). f is continuous at x if and only if for every sequence $\{x_n\}$ of elements of E converging to x the sequence $\{f(x_n)\}$ converges to f(x).

Proposition 2.17. f is continuous on E if and only if for every open $A \subseteq \mathbb{R}$ there exists an open $U \subseteq \mathbb{R}$ such that $f^{-1}(A) = E \cap U$ (where $f^{-1}(A)$ is the full preimage of A).

Example 2.18. $f : \mathbb{R} \setminus \mathbb{Q} \to \mathbb{R}$, f(x) = 1/x, is continuous on its domain.

Theorem 2.19 (Heine – Borel Theorem). A continuous \mathbb{R} -valued function on a compact set takes its minimal and maximal values.

Theorem 2.20 (Intermediate Value Theorem). Let $f : [a,b] \to \mathbb{R}$ be continuous, f(a) < c < f(b). Then there exists $x_0 \in (a,b)$ such that $f(x_0) = c$.

Definition 2.21 (Reminder). $f: E \to \mathbb{R}$ is uniformly continuous on E if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. $|f(x') - f(x)| < \varepsilon$ $\forall x, x' \in E$ satisfying $|x' - x| < \delta$. **Theorem 2.22.** A continuous function on a compact set is uniformly continuous.

Definition 2.23 (Reminder). Monotone function.

Definition 2.24 (Reminder). One-sided limits.

Exercise. f is continuous at x if and only if both one-sided limits exist and are equal to f(x).

Exercise. A monotone function has both one-sided limits at every point.

Theorem 2.25. A monotone function defined on an interval is continuous if and only if its image (range) is an interval.

3 Lebesgue measure

3.1 Outer measure

Definition 3.1. Let $A \subseteq \mathbb{R}$. For every countable cover $I = \{I_k\}_{k \in \mathbb{N}}$ of A by open intervals I_k consider the sum $\sum_{k=1}^{\infty} l(I_k)$, where $l(I_k)$ is the length of I_k (both length and sum may be infinite). The *outer measure* $m^*(A)$ is defined by

$$m^*(A) = \inf_{I \supseteq A} \{ \sum_{k=1}^{\infty} l(I_k) \, | \, I = \bigcup_{k=1}^{\infty} I_k \}.$$

Remark 3.2. m^* is monotone: if $A \subseteq B$ then $m^*(A) \leq m^*(B)$.

Example 3.3. $m^*(\emptyset) = 0$; outer of a countable set is equal to zero.

Proposition 3.4. Outer measure of an interval is equal to its length.

Proposition 3.5. Outer measure is translation invariant: $m^*(A+y) = m^*(A)$, where $A+y = \{a+y \mid a \in A\}$.

Proposition 3.6. Outer measure is countably subadditive: $m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k)$.

Example 3.7. Cantor set C, its properties: C is closed, has outer measure zero, is uncountable.

Exercise. C is *perfect*, i.e. $x \in \overline{C \setminus \{x\}}$ $\forall x \in C$ (every point of C is an accumulation point).

3.2 Lebesgue measurable sets

Notation: $\mathbb{R} \setminus E = E^c$ – complement of E.

Definition 3.8. $E \subset \mathbb{R}$ is (Lebesgue) measurable if for every set $A \subseteq \mathbb{R}$ the following holds:

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c).$$

Proposition 3.9. *E* is measurable if and only if for every set $A \subseteq \mathbb{R}$ $m^*(A) \ge m^*(A \cap E) + m^*(A \cap E^c)$.

Proposition 3.10 (Finite additivity). Let E be measurable. Then for any $C \subseteq \mathbb{R}$ disjoint from E $m^*(E \cup C) = m^*(E) + m^*(C)$.

Example 3.11. Every set of outer measure zero is measurable.

Proposition 3.12. Finite union of measurable sets is measurable.

Corollary 3.13. Let $\{E_k\}_{k=1}^n$ be measurable and (mutually) disjoint. Then for every set $A \subseteq \mathbb{R}$

$$m^*(A \cap (\cup E_k)) = \sum m^*(A \cap E_k).$$

Remark 3.14. Measurability is closed under finite union, taking complement, finite intersection, taking difference.

Proposition 3.15. A union of countably many measurable sets is measurable. In particular, measurable sets form a σ -algebra.

Proposition 3.16. Every interval is measurable.

Corollary 3.17. σ -algebra of measurable sets contains all Borel sets.

Exercise. Every translate of a measurable set is measurable.

3.3 Approximation of measurable sets

Proposition 3.18 (Excision Property). Let $A \subseteq B \subseteq \mathbb{R}$, A is measurable, $m^*(A) < \infty$. Then $m^*(B \setminus A) = m^*(B) - m^*(A)$.

Theorem 3.19 (Outer and inner approximation). *TFAE (The Following Are Equivalent):*

- (0) E is measurable.
- (1) $\forall \varepsilon > 0 \exists open U \supseteq E such that m^*(U \setminus E) < \varepsilon$.
- (2) There exists a countable intersection G of open sets such that $G \supseteq E$ and $m^*(G \setminus E) = 0$.
- (3) $\forall \varepsilon > 0 \exists closed F \subseteq E such that m^*(E \setminus F) < \varepsilon$.
- (4) There exists a countable union \tilde{F} of closed sets such that $\tilde{F} \subseteq E$ and $m^*(E \setminus \tilde{F}) = 0$.

Proposition 3.20. Let E be measurable of finite outer measure. Then for every $\varepsilon > 0$ there exists a finite collection of open intervals $\{I_k\}_{k=1}^n$ such that $m^*(E \triangle (\bigcup_{k=1}^n I_k)) < \varepsilon$ (where $A \triangle B$ is the symmetric difference of A and B).

3.4 Countable additivity

Definition 3.21. The restriction of m^* on measurable sets is called *Lebesgue measure*, $m(E) = m^*(E)$.

Proposition 3.22. Lebesgue measure is countably additive: for a countable collection $\{E_k\}_{k=1}^{\infty}$ of mutually disjoint sets $m(\cup E_k) = \sum m(E_k)$.

Corollary 3.23 (Summary of properties of m). • m(I) = l(I) for any interval I;

- *m* is translation-invariant;
- *m* is countably additive.

Notation: descending (nested) and ascending sets.

Theorem 3.24 (Continuity of measure). (1) If $\{A_k\}_{k=1}^{\infty}$ is an ascending sequence of measurable sets, then $m(\cup A_k) = \lim_{k \to \infty} m(A_k)$. (2) If $\{B_k\}_{k=1}^{\infty}$ is a decending sequence of measurable sets, then $m(\cap B_k) = \lim_{k \to \infty} m(B_k)$.

Notation: a.e. or almost everywhere, i.e. on a complement to a measure zero set.

Example 3.25. Every monotone function is continuous a.e. on \mathbb{R} .

Theorem 3.26 (Borel – Cantelli Lemma). Let $\{E_k\}_{k=1}^{\infty}$ be a countable collection of measurable sets s.t. $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then almost all $x \in \mathbb{R}$ belong to a finitely many of sets E_k (or to none of them), i.e. the set of $x \in \mathbb{R}$ belonging to infinitely many of sets E_k has measure zero.

3.5 Non-measurable sets

Lemma 3.27. Let $E \subseteq \mathbb{R}$ be measurable and bounded. Suppose there exists a countably infinite bounded set $\Lambda \subset \mathbb{R}$ such that all sets in the collection $\{E + \lambda\}_{\lambda \in \Lambda}$ are mutually disjoint. Then m(E) = 0.

Example 3.28. Example of such E and Λ for m(E) = 0: $E = [0,1] \cap \mathbb{Q}$, $\Lambda = \{1/\sqrt{p}\}_{p \text{ prime}}$.

Axiom of Choice: given a collection \mathcal{F} of sets, there exists a set Λ containing exactly one element from every set of \mathcal{F} .

Example. A set of all sets is not a set (explain this!)

Example 3.29. Construction of a set C_E for a given set E as the set of equivalence classes modulo \mathbb{Q} . $C_{[0,1]}$ is non-measurable.

Theorem 3.30. Let E be bounded, $m^*(E) > 0$. Then C_E is non-measurable.

Corollary 3.31 (Vitali's Theorem). Every set of positive outer measure contains a non-measurable subset.

Example 3.32. Cantor – Lebesgue function $\varphi : [0, 1] \rightarrow [0, 1]$, its properties: φ is continuous, increasing, locally constant a.e. (more precisely, on the complement to the Cantor set C).

Example 3.33. $\psi : [0,1] \to [0,2], \psi(x) = \varphi(x) + x$. Properties: ψ is strictly increasing, continuous, takes [0,1] onto $[0,2]; \psi(C)$ has measure 1; there exists a measurable set $E \subset C$ (i.e., $m^*(E) = 0$) such that $\psi(E)$ is non-measurable.

- **Exercise.** (a) Let $f : [a, b] \to \mathbb{R}$ be continuous and strictly increasing. Then the inverse $f^{-1} : f([a, b]) \to [a, b]$ of f is also continuous.
 - (b) Let $f : [a, b] \to \mathbb{R}$ be continuous, $B \subseteq \mathbb{R}$ is a Borel set. Then the preimage $f^{-1}(B)$ is also a Borel set.
 - (c) Let $f : [a, b] \to \mathbb{R}$ be continuous and strictly increasing, $B \subseteq [a, b]$ is a Borel set. Then the image f(B) is also a Borel set.

Corollary 3.34. There exists a set of measure zero which is not Borel.

4 Lebesgue measurable functions

4.1 Definition and operations

Proposition 4.1. *TFAE (The Following Are Equivalent):*

- (1) $\forall c \in \mathbb{R} \{ x \in E \mid f(x) > c \}$ is measurable.
- (2) $\forall c \in \mathbb{R} \{ x \in E \mid f(x) \ge c \}$ is measurable.
- (3) $\forall c \in \mathbb{R} \{ x \in E \mid f(x) < c \}$ is measurable.
- (4) $\forall c \in \mathbb{R} \{ x \in E \mid f(x) \leq c \}$ is measurable.

Also, any of (1)–(4) implies

(5) $\forall c \in \mathbb{R} \{ x \in E \mid f(x) = c \}$ is measurable.

Definition 4.2. $f : \mathbb{E} \to \mathbb{R} \cup \{\pm \infty\}$ is *measurable* if E is measurable and f satisfies assumptions (1)–(4) of Proposition 4.1.

Example 4.3. Indicator function of a set $[a, b] \setminus E_0, E_0 \subset [a, b]$.

Example 4.4. Indicator function is measurable if and only if E_0 is measurable.

Proposition 4.5. Let *E* be measurable, $f : \mathbb{E} \to \mathbb{R} \cup \{\pm \infty\}$. Then *f* is measurable if and only if for every open $U \subseteq \mathbb{R}$ the preimage $f^{-1}(U)$ is measurable.

Corollary 4.6. A continuous function on a measurable set is measurable.

Example 4.7. A monotone function on an interval is measurable.

Proposition 4.8. Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{\pm \infty\}$, E is measurable.

- (1) If f is measurable and f = g a.e. on E, then g is measurable.
- (2) Let $D \subset E$ be measurable. Then f is measurable if and only if its restrictions on D and $E \setminus D$ are measurable.

Proposition 4.9. Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{\pm \infty\}$ be measurable, f, g are finite a.e. on E. Then

- (1) for every $\alpha, \beta \in \mathbb{R}$ the function $\alpha f + \beta g$ is measurable;
- (2) fg is measurable.

Example 4.10. Composition of a measurable and continuous functions which is not measurable: take $E \subset C$ such that $\psi(E)$ is non-measurable (see Example 3.33), then $\chi_E \circ \psi^{-1}$ is non-measurable.

Proposition 4.11. Let $g: E \to \mathbb{R}$ be measurable, $f: \mathbb{R} \to \mathbb{R}$ continuous. Then $f \circ g$ is measurable.

Example 4.12. If f is measurable, then |f| is measurable, $|f|^{\alpha}$ is measurable for $\alpha \in \mathbb{R}$.

Example 4.13. A maximum of a finite collection of measurable functions is measurable.

4.2 Pointwise limits and simple approximation

Definition 4.14 (Reminder). Let $\{f_n\}: E \to \mathbb{R}$ be a sequence of functions, $A \subseteq E, f: E \to \mathbb{R} \cup \{\pm \infty\}$.

- (1) $\{f_n\}$ converges to f pointwise on A if for every $x \in A$ $\lim_{n \to \infty} f_n(x) = f(x)$.
- (2) $\{f_n\}$ converges to f pointwise a.e. on A if it converges to f pointwise on $A \setminus B$, m(B) = 0.
- (3) $\{f_n\}$ converges to f uniformly on A if $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ s.t. $|f_n(x) f(x)| < \varepsilon \forall n > N \forall x \in A$.

Example 4.15. Let $f_n = x^n : [0, 1] \to [0, 1], f \equiv 0$. Then $\{f_n\}$ does not converge to f on [0, 1], converges to f on [0, 1] pointwise a.e., and converges to f uniformly on [0, r] for any $r \in (0, 1)$.

Proposition 4.16. Let $\{f_n\}$ converge to f pointwise a.e. on E, and all f_n are measurable. Then f is measurable.

Definition 4.17. A measurable function is *simple* if it takes only finitely many values.

Example 4.18. • χ_A is simple if A is measurable.

- Let $E = \bigcup_{i=1}^{n} E_i$, all E_i are measurable and disjoint, and $c_i \in \mathbb{R}$, I = 1, ..., n. Then the function $f: E \to \mathbb{R}$ defined by $f(x) = \sum_{i=1}^{n} c_i \chi_{E_i}$ is simple.
- Conversely, every simple function $f: E \to \mathbb{R}$ can be written as $f(x) = \sum_{i=1}^{n} c_i \chi_{E_i}$, where $E_i = f^{-1}(c_i)$.

Proposition 4.19 (Simple Approximation Lemma). Let $f : E \to \mathbb{R}$ be measurable and bounded. Then for any $\varepsilon > 0$ there exist simple functions φ_{ε} and ψ_{ε} s.t. $\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon}$ and $\psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$.

Proposition 4.20 (Simple Approximation Theorem). Let $f : E \to \mathbb{R} \cup \{\pm \infty\}$, E is measurable. Then f is measurable if and only if there exists a sequence φ_n of simple functions on E converging to f pointwise *a.e.* such that $|\varphi_n| \leq |f|$ for every $n \in \mathbb{N}$.

Proposition 4.21. Let $f : \mathbb{R} \to \mathbb{R}$ be bounded. Then f is measurable if and only if there exists a sequence of simple functions converging to f uniformly.