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Please see Sections I.1–I.3 of Real Analysis by Royden and Fitzpatrick for details.

1 Real numbers

1.1 Ordered fields

Definition 1.1 (Reminder). Definition of a field: axioms of a field.

Exercise. Let F be a field.

(a) Show that 0 ∈ F is unique.

(b) Show that 1 ∈ F is unique.

(c) Show that for every a ∈ F its negative −a and inverse a−1 are unique.

(d) Show that (−1) · a = −a and a · 0 = 0 for every a ∈ F.

Example 1.2. Field F2 = {0, 1}; Q.

Definition 1.3. An ordered field is a field F with a subset P ⊂ F (elements of which are called positive
numbers) satisfying the following two properties:

(1) If a, b ∈ P then a+ b ∈ P and a · b ∈ P.

(2) For every a ∈ F exactly one of the following holds: either a ∈ P, or a = 0, or −a ∈ P.

We say that a > b (or b < a) if a− b ∈ P, and a ≥ b (or b ≤ a) if a > b or a = b.

Exercise. Show that 1 ∈ P.

Definition 1.4 (Reminder). Open and closed intervals.

Definition 1.5 (Reminder). Upper and lower bounds of a set, supremum and infimum. Bounded set.

Definition 1.6 (Completeness Axiom). R is an ordered field satisfying the following completeness axiom:
every bounded from above subset of R has a supremum.

Exercise. Show that every bounded from below subset A of R has infimum, and inf A = − sup(−A).

Definition 1.7 (Reminder). Metric space.

Example 1.8. d(x, y) = |x− y| is a metric on R.
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1.2 N, Z and Q

Definition 1.9. A ⊆ R is inductive if

(1) 1 ∈ A;

(2) ∀a ∈ A a+ 1 ∈ A.

Example 1.10. R is inductive.

Definition 1.11. The set of natural numbers N is the intersection of all inductive subsets of R.

Properties of N:

• N is not empty;

• N is inductive;

• N ⊆ P.

Theorem 1.12 (Mathematical Induction). Let for every n ∈ N S(n) denote some statement. Suppose
that S(1) is true, and for every k ∈ N the statement S(k) implies S(k + 1). Then S(n) is true for every
n ∈ N.

Exercise 1.13. (a) Let a, b ∈ N. Show that a+ b ∈ N, ab ∈ N.

(b) Let a ∈ N, a > 1. Show that a− 1 ∈ N.

(c) Let a, b ∈ N, a > b. Show that a− b ∈ N.

(d) Let n ∈ N. Show that there is no natural number m such that n < m < n+ 1.

Theorem 1.14. Every non-empty subset of N has a smallest element.

Proposition 1.15 (Archimedian Property). For every a, b > 0 there exists n ∈ N such that na > b.

Definition 1.16. Integer numbers Z = N ∪ {0} ∪ (−N), rational numbers Q = {m/n |m ∈ Z, n ∈ N},
irrational numbers R \Q.

Example 1.17. Q is an ordered field.

Proposition 1.18. For every a, b ∈ R, a < b, there exists c ∈ Q such that a < c < b.

1.3 Countable and uncountable sets

Definition 1.19. • Two sets A and B are equipotent if there exists a bijection between them. Nota-
tion: |A| = |B|.

• A set A is finite if it is equipotent to a bounded subset {1, 2, . . . , n} of N. Notation: |A| = n. A is
infinite otherwise.

• A set A is countably infinite if it is equipotent to N.

• A set A is countable if it is either finite or countably infinite.

• A set A is uncountable if it is not countable.
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Exercise. Show that every ordered field is infinite.

Example 1.20. 2N is countable.

Exercise. Show that Z and N \ {2017} are countable.

Proposition 1.21. A non-empty subset of a countable set is countable.

Proposition 1.22. A non-empty set B is countable if and only if there exists a surjective map A → B
for some countable set A.

Proposition 1.23. Let X and Y be countable. Then X × Y is countable.

Corollary 1.24. Q is countable.

Exercise. • A union of a finite number of countable sets is countable.

• A countable union of finite sets is countable.

• A countable union of countable sets is countable.

Proposition 1.25. An intersection of a countable collection of closed nested intervals is not empty.

Corollary 1.26. Let a, b ∈ R, a < b. Then [a, b] is uncountable.

Corollary 1.27. R is uncountable.

Exercise. Let {In} be a system of closed nested intervals. Show that their intersection is a single point
if and only if for every positive ε there exists an n ∈ N such that the length of In is less than ε.

Definition. Given a set X, the set of all subsets of X is denoted by P (X) or 2X .

Exercise. Show that P (N) is uncountable.

1.4 Open and closed subsets of R

All sets are subsets of R.

Definition 1.28 (Reminder). A subset A ⊆ R is open if ∀a ∈ A∃ε > 0 s.t. (a− ε, a+ ε) ⊆ A.

Example 1.29. Open interval is open.

Example 1.30. • R and ∅ are open.

• A finite intersection of open sets is open.

• A union of any collection of open sets is open.

Example 1.31. A countable intersection of open sets may not be open:
⋂
n∈N(−1/n, 1/n) = {0}.

Proposition 1.32. Every non-empty open set is a union of a countable set of mutually disjoint open
intervals.

Definition 1.33. Let A be a set. x ∈ R is a closure point (or a point of closure) of A if for ∀ε > 0
(x− ε, x+ ε) ∩A 6= ∅. The closure A of A is the set of all closure points of A. A is closed if A = A.

Proposition 1.34. For every set A its closure A is closed. Moreover, A is a subset of any closed set
containing A.
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Proposition 1.35. A is closed if and only if its complement R \A is open.

Corollary 1.36. A union of a finite number of closed sets is closed. An intersection of any collection of
closed sets is closed.

Exercise (1.37’). A closed bounded set contains its infimum and supremum.

Definition 1.37 (Reminder). An open cover of a set A is a collection {Uλ}λ∈Λ of open sets such that
A ⊆

⋃
λ∈Λ Uλ. A is compact if every open cover of A has a finite subcover.

Theorem 1.38 (Heine – Borel Theorem). A subset of R is compact if and only if it is closed and bounded.

1.5 Borel sets in R

Proposition 1.39 (Nested Sets Theorem). An intersection of a countable collection of closed nested sets
is non-empty.

Definition 1.40. Let X be a set. A collection A of subsets of X is called a σ-algebra of subsets of X is
it satisfies the following:

(1) ∅ ∈ A;

(2) if A ∈ A then X \A ∈ A;

(3) a union of a countable collection of elements of A also belongs to A.

Definition 1.41. Borel sets are elements of the smallest σ-algebra B containing all open sets.

Example. B contains: all open and closed sets; countable unions of closed sets.

Exercise. (a) Every open set is a countable union of closed sets.

(b) B is the smallest σ-algebra containing all closed sets.

2 Sequences and continuity in R

2.1 Sequences in R

Definition 2.1 (Reminder). A sequence {ai} in R is a map f : N → R, f(i) = ai. A sequence is
bounded if the set of its elements is bounded. A sequence is increasing (decreasing) if ai ≤ ai+1 (ai ≥ ai+1

respectively) for every i ∈ N, monotone if it is either increasing or decreasing.

Definition 2.2 (Reminder). A sequence {an} converges to a∈R if ∀ε>0∃N ∈ N such that |an− a|<ε
∀n > N . Notation: limn→∞ an = a.

Exercise. Let {an} converge. Then the sequence is bounded, and limit is unique.

Proposition 2.3 (Reminder). Let {an} be monotone. Then it converges if and only if it is bounded.

Theorem 2.4 (Bolzano – Weierstrass Theorem). Every bounded sequence in R has a converging subse-
quence.

Exercise. limn→∞ an = a if and only if every subsequence of {an} converges to a.

Definition 2.5. a is an accumulation point of {an} if ∀ε > 0 ∀N ∈ N ∃n > N s.t. |an − a| < ε.
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Exercise. Show that a is an accumulation point of {an} if and only if there exists a subsequence of {an}
converging to a.

Definition 2.6 (Reminder). {an} is a Cauchy sequence if ∀ε > 0∃N ∈ N s.t. |an − am| < ε∀m,n > N .

Theorem 2.7 (Reminder). A sequence of real numbers converges if and only if it is a Cauchy sequence.

Definition 2.8 (Reminder). Convergence to ±∞. sup and inf of unbounded sets.

Definition 2.9. A limit superior of {an} is defined by lim sup an = limn→∞ sup{ak | k ≥ n}.
A limit inferior of {an} is defined by lim inf an = limn→∞ inf{ak | k ≥ n}.

Example 2.10. • If {an} is unbounded from above (below) then lim sup an = +∞ (lim inf an = −∞
respectively).

• Let an = (−1)n. Then lim sup an = 1, lim inf an = −1.

• Let {an} converge. Then lim sup an = lim inf an = lim an

Proposition 2.11. Both limit superior and limit inferior always exist, and they are equal to the largest
(smallest, respectively) accumulation point of {an}.

Example 2.12. Let P (z) =
∑∞

n=0 anz
n be a complex power series, an 6= 0. Then its convergence radius

R exists and 1
R = lim sup

∣∣∣an+1

an

∣∣∣.
Exercise. • Show that lim sup an = − lim inf(−an).

• Let an ≤ bn for every n ∈ N. Show that lim sup an ≤ lim sup bn.

Definition 2.13 (Reminder). Converging series.

Proposition 2.14. Show that
∑
ak converges if and only if ∀ε > 0 ∃N ∈ N such that

∣∣∑n+m
k=n ak

∣∣ < ε
∀n > N,m ≥ 0.

2.2 Continuous functions

Definition 2.15 (Reminder). Let E ⊆ R. A function f : E → R is continuous at x ∈ E if ∀ε > 0 ∃δ > 0
s.t. |f(x′) − f(x)| < ε∀x′ ∈ E satisfying |x′ − x| < δ. f is continuous on E if it continuous at every
x ∈ E.

Proposition 2.16 (Reminder). f is continuous at x if and only if for every sequence {xn} of elements
of E converging to x the sequence {f(xn)} converges to f(x).

Proposition 2.17. f is continuous on E if and only if for every open A ⊆ R there exists an open U ⊆ R
such that f−1(A) = E ∩ U (where f−1(A) is the full preimage of A).

Example 2.18. f : R \Q→ R, f(x) = 1/x, is continuous on its domain.

Theorem 2.19 (Heine – Borel Theorem). A continuous R-valued function on a compact set takes its
minimal and maximal values.

Theorem 2.20 (Intermediate Value Theorem). Let f : [a, b]→ R be continuous, f(a) < c < f(b). Then
there exists x0 ∈ (a, b) such that f(x0) = c.

Definition 2.21 (Reminder). f :E →R is uniformly continuous on E if ∀ε>0 ∃δ > 0 s.t. |f(x′)−f(x)| < ε
∀x, x′ ∈ E satisfying |x′ − x| < δ.

5



Theorem 2.22. A continuous function on a compact set is uniformly continuous.

Definition 2.23 (Reminder). Monotone function.

Definition 2.24 (Reminder). One-sided limits.

Exercise. f is continuous at x if and only if both one-sided limits exist and are equal to f(x).

Exercise. A monotone function has both one-sided limits at every point.

Theorem 2.25. A monotone function defined on an interval is continuous if and only if its image (range)
is an interval.

3 Lebesgue measure

3.1 Outer measure

Definition 3.1. Let A ⊆ R. For every countable cover I = {Ik}k∈N of A by open intervals Ik consider
the sum

∑∞
k=1 l(Ik), where l(Ik) is the length of Ik (both length and sum may be infinite). The outer

measure m∗(A) is defined by

m∗(A) = inf
I⊇A
{
∞∑
k=1

l(Ik) | I =
∞⋃
k=1

Ik}.

Remark 3.2. m∗ is monotone: if A ⊆ B then m∗(A) ≤ m∗(B).

Example 3.3. m∗(∅) = 0; outer of a countable set is equal to zero.

Proposition 3.4. Outer measure of an interval is equal to its length.

Proposition 3.5. Outer measure is translation invariant: m∗(A+y) = m∗(A), where A+y = {a+y | a ∈
A}.

Proposition 3.6. Outer measure is countably subadditive: m∗(
⋃∞
k=1Ek) ≤

∑∞
k=1m

∗(Ek).

Example 3.7. Cantor set C, its properties: C is closed, has outer measure zero, is uncountable.

Exercise. C is perfect, i.e. x ∈ C \ {x} ∀x ∈ C (every point of C is an accumulation point).

3.2 Lebesgue measurable sets

Notation: R \ E = Ec – complement of E.

Definition 3.8. E ⊂ R is (Lebesgue) measurable if for every set A ⊆ R the following holds:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

Proposition 3.9. E is measurable if and only if for every set A ⊆ R m∗(A) ≥ m∗(A∩E) +m∗(A∩Ec).

Proposition 3.10 (Finite additivity). Let E be measurable. Then for any C ⊆ R disjoint from E
m∗(E ∪ C) = m∗(E) +m∗(C).

Example 3.11. Every set of outer measure zero is measurable.

Proposition 3.12. Finite union of measurable sets is measurable.
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Corollary 3.13. Let {Ek}nk=1 be measurable and (mutually) disjoint. Then for every set A ⊆ R

m∗(A ∩ (∪Ek)) =
∑

m∗(A ∩ Ek).

Remark 3.14. Measurability is closed under finite union, taking complement, finite intersection, taking
difference.

Proposition 3.15. A union of countably many measurable sets is measurable. In particular, measurable
sets form a σ-algebra.

Proposition 3.16. Every interval is measurable.

Corollary 3.17. σ-algebra of measurable sets contains all Borel sets.

Exercise. Every translate of a measurable set is measurable.

3.3 Approximation of measurable sets

Proposition 3.18 (Excision Property). Let A ⊆ B ⊆ R, A is measurable, m∗(A) <∞. Then m∗(B\A) =
m∗(B)−m∗(A).

Theorem 3.19 (Outer and inner approximation). TFAE (The Following Are Equivalent):

(0) E is measurable.

(1) ∀ε > 0∃ open U ⊇ E such that m∗(U \ E) < ε.

(2) There exists a countable intersection G of open sets such that G ⊇ E and m∗(G \ E) = 0.

(3) ∀ε > 0∃ closed F ⊆ E such that m∗(E \ F ) < ε.

(4) There exists a countable union F̃ of closed sets such that F̃ ⊆ E and m∗(E \ F̃ ) = 0.

Proposition 3.20. Let E be measurable of finite outer measure. Then for every ε > 0 there exists a
finite collection of open intervals {Ik}nk=1 such that m∗(E4(∪nk=1Ik)) < ε (where A4B is the symmetric
difference of A and B).

3.4 Countable additivity

Definition 3.21. The restriction of m∗ on measurable sets is called Lebesgue measure, m(E) = m∗(E).

Proposition 3.22. Lebesgue measure is countably additive: for a countable collection {Ek}∞k=1 of mutu-
ally disjoint sets m(∪Ek) =

∑
m(Ek).

Corollary 3.23 (Summary of properties of m). • m(I) = l(I) for any interval I;

• m is translation-invariant;

• m is countably additive.

Notation: descending (nested) and ascending sets.

Theorem 3.24 (Continuity of measure). (1) If {Ak}∞k=1 is an ascending sequence of measurable sets,
then m(∪Ak) = limk→∞m(Ak).
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(2) If {Bk}∞k=1 is a decending sequence of measurable sets, then m(∩Bk) = limk→∞m(Bk).

Notation: a.e. or almost everywhere, i.e. on a complement to a measure zero set.

Example 3.25. Every monotone function is continuous a.e. on R.

Theorem 3.26 (Borel – Cantelli Lemma). Let {Ek}∞k=1 be a countable collection of measurable sets s.t.∑∞
k=1m(Ek) <∞. Then almost all x ∈ R belong to a finitely many of sets Ek (or to none of them), i.e.

the set of x ∈ R belonging to infinitely many of sets Ek has measure zero.

3.5 Non-measurable sets

Lemma 3.27. Let E ⊆ R be measurable and bounded. Suppose there exists a countably infinite bounded
set Λ ⊂ R such that all sets in the collection {E + λ}λ∈Λ are mutually disjoint. Then m(E) = 0.

Example 3.28. Example of such E and Λ for m(E) = 0: E = [0, 1] ∩Q, Λ = {1/√p}p prime.

Axiom of Choice: given a collection F of sets, there exists a set Λ containing exactly one element from
every set of F .

Example. A set of all sets is not a set (explain this!)

Example 3.29. Construction of a set CE for a given set E as the set of equivalence classes modulo Q.
C[0,1] is non-measurable.

Theorem 3.30. Let E be bounded, m∗(E) > 0. Then CE is non-measurable.

Corollary 3.31 (Vitali’s Theorem). Every set of positive outer measure contains a non-measurable subset.

Example 3.32. Cantor – Lebesgue function ϕ : [0, 1]→ [0, 1], its properties: ϕ is continuous, increasing,
locally constant a.e. (more precisely, on the complement to the Cantor set C).

Example 3.33. ψ : [0, 1]→ [0, 2], ψ(x) = ϕ(x)+x. Properties: ψ is strictly increasing, continuous, takes
[0, 1] onto [0, 2]; ψ(C) has measure 1; there exists a measurable set E ⊂ C (i.e., m∗(E) = 0) such that
ψ(E) is non-measurable.

Exercise. (a) Let f : [a, b]→ R be continuous and strictly increasing. Then the inverse f−1 : f([a, b])→
[a, b] of f is also continuous.

(b) Let f : [a, b] → R be continuous, B ⊆ R is a Borel set. Then the preimage f−1(B) is also a Borel
set.

(c) Let f : [a, b] → R be continuous and strictly increasing, B ⊆ [a, b] is a Borel set. Then the image
f(B) is also a Borel set.

Corollary 3.34. There exists a set of measure zero which is not Borel.
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4 Lebesgue measurable functions

4.1 Definition and operations

Proposition 4.1. TFAE (The Following Are Equivalent):

(1) ∀c ∈ R {x ∈ E | f(x) > c} is measurable.

(2) ∀c ∈ R {x ∈ E | f(x) ≥ c} is measurable.

(3) ∀c ∈ R {x ∈ E | f(x) < c} is measurable.

(4) ∀c ∈ R {x ∈ E | f(x) ≤ c} is measurable.

Also, any of (1)–(4) implies

(5) ∀c ∈ R {x ∈ E | f(x) = c} is measurable.

Definition 4.2. f : E→ R ∪ {±∞} is measurable if E is measurable and f satisfies assumptions (1)–(4)
of Proposition 4.1.

Example 4.3. Indicator function of a set [a, b] \ E0, E0 ⊂ [a, b].

Example 4.4. Indicator function is measurable if and only if E0 is measurable.

Proposition 4.5. Let E be measurable, f : E → R ∪ {±∞}. Then f is measurable if and only if for
every open U ⊆ R the preimage f−1(U) is measurable.

Corollary 4.6. A continuous function on a measurable set is measurable.

Example 4.7. A monotone function on an interval is measurable.

Proposition 4.8. Let f, g : E→ R ∪ {±∞}, E is measurable.

(1) If f is measurable and f = g a.e. on E, then g is measurable.

(2) Let D ⊂ E be measurable. Then f is measurable if and only if its restrictions on D and E \D are
measurable.

Proposition 4.9. Let f, g : E→ R ∪ {±∞} be measurable, f, g are finite a.e. on E. Then

(1) for every α, β ∈ R the function αf + βg is measurable;

(2) fg is measurable.

Example 4.10. Composition of a measurable and continuous functions which is not measurable: take
E ⊂ C such that ψ(E) is non-measurable (see Example 3.33), then χE ◦ ψ−1 is non-measurable.

Proposition 4.11. Let g : E → R be measurable, f : R→ R continuous. Then f ◦ g is measurable.

Example 4.12. If f is measurable, then |f | is measurable, |f |α is measurable for α ∈ R.

Example 4.13. A maximum of a finite collection of measurable functions is measurable.
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4.2 Pointwise limits and simple approximation

Definition 4.14 (Reminder). Let {fn} : E → R be a sequence of functions, A ⊆ E, f : E → R ∪ {±∞}.

(1) {fn} converges to f pointwise on A if for every x ∈ A limn→∞ fn(x) = f(x).

(2) {fn} converges to f pointwise a.e. on A if it converges to f pointwise on A \B, m(B) = 0.

(3) {fn} converges to f uniformly on A if ∀ε > 0 ∃N ∈ N s.t. |fn(x)− f(x)| < ε∀n > N ∀x ∈ A.

Example 4.15. Let fn = xn : [0, 1]→ [0, 1], f ≡ 0. Then {fn} does not converge to f on [0, 1], converges
to f on [0, 1] pointwise a.e., and converges to f uniformly on [0, r] for any r ∈ (0, 1).

Proposition 4.16. Let {fn} converge to f pointwise a.e. on E, and all fn are measurable. Then f is
measurable.

Definition 4.17. A measurable function is simple if it takes only finitely many values.

Example 4.18. • χA is simple if A is measurable.

• Let E =
⋃n
i=1Ei, all Ei are measurable and disjoint, and ci ∈ R, I = 1, . . . , n. Then the function

f : E → R defined by f(x) =
∑n

i=1 ciχEi is simple.

• Conversely, every simple fiunction f : E → R can be written as f(x) =
∑n

i=1 ciχEi , where Ei =
f−1(ci).

Proposition 4.19 (Simple Approximation Lemma). Let f : E → R be measurable and bounded. Then
for any ε > 0 there exist simple functions ϕε and ψε s.t. ϕε ≤ f ≤ ψε and ψε − ϕε < ε.

Proposition 4.20 (Simple Approximation Theorem). Let f : E → R∪ {±∞}, E is measurable. Then f
is measurable if and only if there exists a sequence ϕn of simple functions on E converging to f pointwise
a.e. such that |ϕn| ≤ |f | for every n ∈ N.

Proposition 4.21. Let f : R→ R be bounded. Then f is measurable if and only if there exists a sequence
of simple functions converging to f uniformly.
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