Riemannian Geometry IV, Homework 1 (Week 1)

Due date for starred problems: Friday, October 25.

1.1. (\star) Let M be a smooth manifold of dimension m and N be a smooth manifold of dimension n. Show that the cartesian product

$$M \times N := \{(x, y) \mid x \in M, y \in N\}$$

is a smooth manifold of dimension m + n.

1.2. Consider the Lemniscate of Gerono Γ , which is given as a subset of \mathbb{R}^2 by

$$\Gamma = \{(x, y) \in \mathbb{R}^2 \mid x^4 - x^2 + y^2 = 0\}$$

We define open sets in Γ as intersections of Γ with open subsets of \mathbb{R}^2 . Show that Γ does not admit a structure of a smooth 1-manifold.

1.3. Stereographic projection

Let M be the unit 2-dimensional sphere in \mathbb{R}^3 , $N, S \in M$, where N = (0,0,1) and S = (0,0,-1). Define $U_N = M \setminus \{N\}$, $U_S = M \setminus \{S\}$, $V_N = V_S = \mathbb{R}^2$. Define also the map $\varphi_N : U_N \to V_N$ in the following way: if $p \in U_N$, the image $\varphi_N(p)$ is the intersection of the line through N and p with the plane $\{z = 0\}$. The map $\varphi_S : U_S \to V_S$ is defined in the same way (substitute N by S everywhere).

Compute explicitely the maps φ_N , φ_S and the transition map $\varphi_N \circ \varphi_S^{-1}$. Show that the collection $(U_\alpha, V_\alpha, \varphi_\alpha)_{\alpha \in \{S, N\}}$ is a smooth atlas, and M is a smooth manifold.

- 1.4. Introduce a structure of a smooth manifold on
 - (a) a 2-dimensional torus \mathbb{T}^2 obtained from a square $[0,1] \times [0,1]$ by identification of the boundary:

$$(0,y)\sim (1,y),\quad (x,0)\sim (x,1)\qquad \forall x,y\in [0,1];$$

(b) a Klein bottle obtained from a square $[0,1] \times [0,1]$ by identification of the boundary:

$$(0,y) \sim (1,y), \quad (x,0) \sim (1-x,1) \qquad \forall x,y \in [0,1];$$

(c) a 3-dimensional torus \mathbb{T}^3 obtained from a cube $[0,1]\times[0,1]\times[0,1]$ by identification of the boundary:

$$(0, y, z) \sim (1, y, z), \quad (x, 0, z) \sim (x, 1, z), \quad (x, y, 0) \sim (x, y, 1) \quad \forall x, y, z \in [0, 1].$$