Durham University Pavel Tumarkin

Riemannian Geometry IV, Solutions 10 (Week 10)

10.1. (Remark 5.19)

Let (M, g) be a Riemannian manifold, $p \in M, v \in T_pM$.

- (a) Show that a curve $c(t) = \exp_p(tv)$ is a geodesic.
- (b) Show that every geodesic γ through p can be written as $\gamma(t) = \exp_p(tw)$ for appropriate $w \in T_p M$.

Solution: The first statement follows from the definition of the exponential map. The second one follows from the existence and uniqueness of a geodesic through p with a given tangent vector.

10.2. (Lemma 5.20)

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ be small enough such that

$$\exp_p: B_{\varepsilon}(0_p) \to B_{\varepsilon}(p) \subset M$$

is a diffeomorphism. Let $\gamma: [0,1] \to B_{\varepsilon}(p) \setminus \{p\}$ be any curve.

Show that there exists a curve $v : [0,1] \to T_p M$, ||v(s)|| = 1 for all $s \in [0,1]$, and a non-negative function $r : [0,1] \to \mathbb{R}_{>0}$, such that

$$\gamma(s) = \exp_p(r(s)v(s)).$$

Solution: Since the image of γ belongs to $B_{\varepsilon}(p)$, for every $s \in [0,1]$ we have $\gamma(s) = \exp_p(w(s))$ for an appropriate $w(s) \in T_p M$. Then denote r(s) = ||w(s)||, v(s) = w(s)/r(s).

10.3. (Lemma 5.14)

Use the exponential map to show that any vector field $X \in \mathfrak{X}_c(M)$ along a smooth curve c(t): $[a,b] \to M$ is a variational vector field of some variation F(s,t) (i.e., $X(t) = \frac{\partial F}{\partial s}(0,t)$). Show that if X(a) = X(b) = 0 then the variation F(s,t) can be chosen to be proper.

Solution: Assume for simplicity that for every $t \in [a, b]$ the exponential map at c(t) is defined in a rather large ball. Consider the map $F(s, t) : (-\varepsilon, \varepsilon) \times [a, b] \to M$, $F(s, t) = \exp_{c(t)} sX(t)$ (check that this map is smooth!). Since $F(0, t) = \exp_{c(t)} 0 = c(t)$, this is a variation of c. Further, the variational vector field of F can be easily computed by

$$\frac{\partial F}{\partial s}(0,t) = \frac{d}{ds} (\exp_{c(t)} sX(t)) \big|_{s=0} = X(t)$$

Finally, if X(a) = X(b) = 0, then $F(s, a) = \exp_{c(a)} 0 \equiv c(a)$ and, similarly, $F(s, b) \equiv c(b)$, so the variation is proper.

10.4. Geodesic normal coordinates

Let (M, q) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ such that

$$\exp_p: B_{\varepsilon}(0_p) \to B_{\varepsilon}(p) \subset M$$

is a diffeomorphism. Let v_1, \ldots, v_n be an orthonormal basis of T_pM . Consider a local coordinate chart of M given by $\varphi = (x_1, \ldots, x_n) : B_{\varepsilon}(p) \to V = \{w \in \mathbb{R}^n \mid ||w|| < \varepsilon\}$ via

$$\varphi^{-1}(x_1,\ldots,x_n) = \exp_p(\sum_{i=1}^n x_i v_i).$$

The coordinate functions x_1, \ldots, x_n of φ are called *geodesic normal coordinates*.

(a) Let g_{ij} be the metric in terms of the above coordinate system φ . Show that at the point p

$$g_{ij}(p) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

(b) Let $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$ be an arbitrary vector, and $c(t) = \varphi^{-1}(tw)$. Explain why c(t) is a geodesic and deduce from this fact that

$$\sum_{i,j} w_i w_j \Gamma^k_{ij}(c(t)) = 0$$

for all $1 \leq k \leq n$.

(c) Derive from (b) that all Christoffel symbols Γ_{ij}^k of the chart φ vanish at the point p (by choosing appropriate vectors $w \in \mathbb{R}^n$).

Solution:

(a) We will show that

$$\frac{\partial}{\partial x_i}\Big|_p = v_i$$

This will imply

$$g_{ij}(p) = \langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle_p = \langle v_i, v_j \rangle_p = \delta_{ij}.$$

Denote by $\{e_i\}$ orthonormal basis in $V \subset \mathbb{R}^n$. Now, as $\varphi(p) = 0$, we can write

$$\frac{\partial}{\partial x_i}\Big|_p = \frac{d}{dt}\Big|_{t=0}\varphi^{-1}(0+te_i) = \frac{d}{dt}\Big|_{t=0}\exp_p(tv_i) = v_i,$$

which proves (a).

(b) We have

$$c(t) = \varphi^{-1}(tw_1, \dots, tw_n) = \exp_p(t\sum_j w_j v_j)$$

Let $v = \sum_j w_j v_j \in T_p M$. Then the expression above shows that c is a geodesic with initial vector v. Let $(c_1, \ldots, c_n)|_t = \varphi(c(t))$, i.e., $c_j(t) = tw_j$, $c'_j(t) = w_j$ and $c''_j(t) = 0$. Let $\frac{D}{dt}$ denote covariant derivative along c. Since c is a geodesic, we have

$$\begin{split} 0 &= \frac{D}{dt}c' = \frac{D}{dt}\sum_{j}c'_{j}\left(\frac{\partial}{\partial x_{j}}(c(t))\right) = \sum_{j}w_{j}\nabla_{c'}\frac{\partial}{\partial x_{j}} = \\ &= \sum_{i,j}w_{i}w_{j}\left(\nabla_{\frac{\partial}{\partial x_{i}}}\frac{\partial}{\partial x_{j}}\right)(c(t)) = \sum_{k}\left(\sum_{i,j}w_{i}w_{j}(\Gamma_{ij}^{k}(c(t)))\right)\frac{\partial}{\partial x_{k}}(c(t)). \end{split}$$

Using the fact that $\frac{\partial}{\partial x_k}$ form a basis, we conclude that

(*)
$$\sum_{i,j} w_i w_j \Gamma^k_{ij}(c(t)) = 0$$

for all $k \in \{1, \ldots, n\}$.

(c) Evaluating (*) at t = 0, we obtain

$$\sum_{i,j} w_i w_j \Gamma_{ij}^k(p) = 0 \quad \text{for all } w \in \mathbb{R}^n.$$

The choice $w = e_i$ yields

$$\Gamma_{ii}^k(p) = 0,$$

and then the choice $w = e_i + e_j$ yields

$$2\Gamma_{ij}^k(p) = 0,$$

so we conclude that all Christoffel symbols vanish at p. Consequently, we have

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) = 0.$$