Riemannian Geometry IV, Solutions 10 (Week 10)

10.1. (Remark 5.19)

Let (M, g) be a Riemannian manifold, $p \in M, v \in T_{p} M$.
(a) Show that a curve $c(t)=\exp _{p}(t v)$ is a geodesic.
(b) Show that every geodesic γ through p can be written as $\gamma(t)=\exp _{p}(t w)$ for appropriate $w \in T_{p} M$.

Solution: The first statement follows from the definition of the exponential map. The second one follows from the existence and uniqueness of a geodesic through p with a given tangent vector.

10.2. (Lemma 5.20)

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon>0$ be small enough such that

$$
\exp _{p}: B_{\varepsilon}\left(0_{p}\right) \rightarrow B_{\varepsilon}(p) \subset M
$$

is a diffeomorphism. Let $\gamma:[0,1] \rightarrow B_{\varepsilon}(p) \backslash\{p\}$ be any curve.
Show that there exists a curve $v:[0,1] \rightarrow T_{p} M,\|v(s)\|=1$ for all $s \in[0,1]$, and a non-negative function $r:[0,1] \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\gamma(s)=\exp _{p}(r(s) v(s))
$$

Solution: Since the image of γ belongs to $B_{\varepsilon}(p)$, for every $s \in[0,1]$ we have $\gamma(s)=\exp _{p}(w(s))$ for an appropriate $w(s) \in T_{p} M$. Then denote $r(s)=\|w(s)\|, v(s)=w(s) / r(s)$.

10.3. (Lemma 5.14)

Use the exponential map to show that any vector field $X \in \mathfrak{X}_{c}(M)$ along a smooth curve $c(t)$: $[a, b] \rightarrow M$ is a variational vector field of some variation $F(s, t)$ (i.e., $\left.X(t)=\frac{\partial F}{\partial s}(0, t)\right)$. Show that if $X(a)=X(b)=0$ then the variation $F(s, t)$ can be chosen to be proper.
Solution: Assume for simplicity that for every $t \in[a, b]$ the exponential map at $c(t)$ is defined in a rather large ball. Consider the map $F(s, t):(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M, F(s, t)=\exp _{c(t)} s X(t)$ (check that this map is smooth!). Since $F(0, t)=\exp _{c(t)} 0=c(t)$, this is a variation of c. Further, the variational vector field of F can be easily computed by

$$
\frac{\partial F}{\partial s}(0, t)=\left.\frac{d}{d s}\left(\exp _{c(t)} s X(t)\right)\right|_{s=0}=X(t)
$$

Finally, if $X(a)=X(b)=0$, then $F(s, a)=\exp _{c(a)} 0 \equiv c(a)$ and, similarly, $F(s, b) \equiv c(b)$, so the variation is proper.

10.4. Geodesic normal coordinates

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon>0$ such that

$$
\exp _{p}: B_{\varepsilon}\left(0_{p}\right) \rightarrow B_{\varepsilon}(p) \subset M
$$

is a diffeomorphism. Let v_{1}, \ldots, v_{n} be an orthonormal basis of $T_{p} M$. Consider a local coordinate chart of M given by $\varphi=\left(x_{1}, \ldots, x_{n}\right): B_{\varepsilon}(p) \rightarrow V=\left\{w \in \mathbb{R}^{n} \mid\|w\|<\varepsilon\right\}$ via

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum_{i=1}^{n} x_{i} v_{i}\right)
$$

The coordinate functions x_{1}, \ldots, x_{n} of φ are called geodesic normal coordinates.
(a) Let $g_{i j}$ be the metric in terms of the above coordinate system φ. Show that at the point p

$$
g_{i j}(p)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

(b) Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ be an arbitrary vector, and $c(t)=\varphi^{-1}(t w)$. Explain why $c(t)$ is a geodesic and deduce from this fact that

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0
$$

for all $1 \leq k \leq n$.
(c) Derive from (b) that all Christoffel symbols $\Gamma_{i j}^{k}$ of the chart φ vanish at the point p (by choosing appropriate vectors $w \in \mathbb{R}^{n}$).

Solution:

(a) We will show that

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=v_{i}
$$

This will imply

$$
g_{i j}(p)=\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle_{p}=\left\langle v_{i}, v_{j}\right\rangle_{p}=\delta_{i j} .
$$

Denote by $\left\{e_{i}\right\}$ orthonormal basis in $V \subset \mathbb{R}^{n}$. Now, as $\varphi(p)=0$, we can write

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\left.\frac{d}{d t}\right|_{t=0} \varphi^{-1}\left(0+t e_{i}\right)=\left.\frac{d}{d t}\right|_{t=0} \exp _{p}\left(t v_{i}\right)=v_{i}
$$

which proves (a).
(b) We have

$$
c(t)=\varphi^{-1}\left(t w_{1}, \ldots, t w_{n}\right)=\exp _{p}\left(t \sum_{j} w_{j} v_{j}\right) .
$$

Let $v=\sum_{j} w_{j} v_{j} \in T_{p} M$. Then the expression above shows that c is a geodesic with initial vector v. Let $\left.\left(c_{1}, \ldots, c_{n}\right)\right|_{t}=\varphi(c(t))$, i.e., $c_{j}(t)=t w_{j}, c_{j}^{\prime}(t)=w_{j}$ and $c_{j}^{\prime \prime}(t)=0$. Let $\frac{D}{d t}$ denote covariant derivative along c. Since c is a geodesic, we have

$$
\begin{aligned}
& 0=\frac{D}{d t} c^{\prime}=\frac{D}{d t} \sum_{j} c_{j}^{\prime}\left(\frac{\partial}{\partial x_{j}}(c(t))\right)=\sum_{j} w_{j} \nabla_{c^{\prime}} \frac{\partial}{\partial x_{j}}= \\
&=\sum_{i, j} w_{i} w_{j}\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}\right)(c(t))=\sum_{k}\left(\sum_{i, j} w_{i} w_{j}\left(\Gamma_{i j}^{k}(c(t))\right)\right) \frac{\partial}{\partial x_{k}}(c(t)) .
\end{aligned}
$$

Using the fact that $\frac{\partial}{\partial x_{k}}$ form a basis, we conclude that

$$
\begin{equation*}
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0 \tag{*}
\end{equation*}
$$

for all $k \in\{1, \ldots, n\}$.
(c) Evaluating $(*)$ at $t=0$, we obtain

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(p)=0 \quad \text { for all } w \in \mathbb{R}^{n}
$$

The choice $w=e_{i}$ yields

$$
\Gamma_{i i}^{k}(p)=0
$$

and then the choice $w=e_{i}+e_{j}$ yields

$$
2 \Gamma_{i j}^{k}(p)=0
$$

so we conclude that all Christoffel symbols vanish at p. Consequently, we have

$$
\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}(p)=0 .
$$

