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10.1. (Remark 5.19)
Let (M, g) be a Riemannian manifold, p ∈M , v ∈ TpM .

(a) Show that a curve c(t) = expp(tv) is a geodesic.

(b) Show that every geodesic γ through p can be written as γ(t) = expp(tw) for appropriate
w ∈ TpM .

Solution: The first statement follows from the definition of the exponential map. The second one follows from

the existence and uniqueness of a geodesic through p with a given tangent vector.

10.2. (Lemma 5.20)
Let (M, g) be a Riemannian manifold and p ∈M . Let ε > 0 be small enough such that

expp : Bε(0p)→ Bε(p) ⊂M

is a diffeomorphism. Let γ : [0, 1]→ Bε(p) \ {p} be any curve.

Show that there exists a curve v : [0, 1] → TpM , ‖v(s)‖ = 1 for all s ∈ [0, 1], and a non-negative
function r : [0, 1]→ R≥0, such that

γ(s) = expp(r(s)v(s)).

Solution: Since the image of γ belongs to Bε(p), for every s ∈ [0, 1] we have γ(s) = expp(w(s)) for an

appropriate w(s) ∈ TpM . Then denote r(s) = ‖w(s)‖, v(s) = w(s)/r(s).

10.3. (Lemma 5.14)
Use the exponential map to show that any vector field X ∈ Xc(M) along a smooth curve c(t) :
[a, b]→M is a variational vector field of some variation F (s, t) (i.e., X(t) = ∂F

∂s (0, t)). Show that if
X(a) = X(b) = 0 then the variation F (s, t) can be chosen to be proper.

Solution: Assume for simplicity that for every t ∈ [a, b] the exponential map at c(t) is defined in a rather
large ball. Consider the map F (s, t) : (−ε, ε) × [a, b] → M , F (s, t) = expc(t) sX(t) (check that this map is
smooth!). Since F (0, t) = expc(t) 0 = c(t), this is a variation of c. Further, the variational vector field of F
can be easily computed by

∂F

∂s
(0, t) =

d

ds
(expc(t) sX(t))

∣∣
s=0

= X(t)

Finally, if X(a) = X(b) = 0, then F (s, a) = expc(a) 0 ≡ c(a) and, similarly, F (s, b) ≡ c(b), so the variation is
proper.

10.4. Geodesic normal coordinates
Let (M, g) be a Riemannian manifold and p ∈M . Let ε > 0 such that

expp : Bε(0p)→ Bε(p) ⊂M

is a diffeomorphism. Let v1, . . . , vn be an orthonormal basis of TpM . Consider a local coordinate
chart of M given by ϕ = (x1, . . . , xn) : Bε(p)→ V = {w ∈ Rn | ‖w‖ < ε} via

ϕ−1(x1, . . . , xn) = expp(

n∑
i=1

xivi).

The coordinate functions x1, . . . , xn of ϕ are called geodesic normal coordinates.



(a) Let gij be the metric in terms of the above coordinate system ϕ. Show that at the point p

gij(p) = δij =

{
1 if i = j,

0 if i 6= j.

(b) Let w = (w1, . . . , wn) ∈ Rn be an arbitrary vector, and c(t) = ϕ−1(tw). Explain why c(t) is a
geodesic and deduce from this fact that∑

i,j

wiwjΓ
k
ij(c(t)) = 0

for all 1 ≤ k ≤ n.

(c) Derive from (b) that all Christoffel symbols Γk
ij of the chart ϕ vanish at the point p (by choosing

appropriate vectors w ∈ Rn).

Solution:

(a) We will show that
∂

∂xi

∣∣∣
p

= vi.

This will imply

gij(p) = 〈 ∂
∂xi

,
∂

∂xj
〉p = 〈vi, vj〉p = δij .

Denote by {ei} orthonormal basis in V ⊂ Rn. Now, as ϕ(p) = 0, we can write

∂

∂xi

∣∣∣
p

=
d

dt

∣∣∣
t=0

ϕ−1(0 + tei) =
d

dt

∣∣∣
t=0

expp(tvi) = vi,

which proves (a).

(b) We have

c(t) = ϕ−1(tw1, . . . , twn) = expp(t
∑
j

wjvj).

Let v =
∑

j wjvj ∈ TpM . Then the expression above shows that c is a geodesic with initial vector v. Let

(c1, . . . , cn)|t = ϕ(c(t)), i.e., cj(t) = twj , c
′
j(t) = wj and c′′j (t) = 0. Let D

dt denote covariant derivative
along c. Since c is a geodesic, we have

0 =
D

dt
c′ =

D

dt

∑
j

c′j

(
∂

∂xj
(c(t))

)
=
∑
j

wj∇c′
∂

∂xj
=

=
∑
i,j

wiwj

(
∇ ∂

∂xi

∂

∂xj

)
(c(t)) =

∑
k

∑
i,j

wiwj(Γ
k
ij(c(t)))

 ∂

∂xk
(c(t)).

Using the fact that ∂
∂xk

form a basis, we conclude that

(∗)
∑
i,j

wiwjΓ
k
ij(c(t)) = 0

for all k ∈ {1, . . . , n}.



(c) Evaluating (∗) at t = 0, we obtain∑
i,j

wiwjΓ
k
ij(p) = 0 for all w ∈ Rn.

The choice w = ei yields
Γk
ii(p) = 0,

and then the choice w = ei + ej yields
2Γk

ij(p) = 0,

so we conclude that all Christoffel symbols vanish at p. Consequently, we have

∇ ∂
∂xi

∂

∂xj
(p) = 0.


