Riemannian Geometry IV, Homework 4 (Week 4)

Due date for starred problems: Friday, November 8.

- **4.1.** Let M and N be smooth manifolds. Using local coordinates, explain why $T_{(p,q)}(M \times N) = T_p M \oplus T_q N$ for $p \in M$ and $q \in N$.
- **4.2.** Let $M \subset \mathbb{R}^n$ be a smooth manifold given by the equation $f(x_1, \ldots, x_n) = a$, where $f \in C^{\infty}(\mathbb{R}^n)$. Let $p \in M$ and $v \in T_pM$. Show that the vector $v = (v_1, \ldots, v_n)$ satisfies the equation

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} v_i = 0$$

or, equivalently, $\langle \text{grad } f(p), v \rangle = 0.$

4.3. (\star) Let X be a vector field on \mathbb{R}^3 defined by

$$X(x,y,z) = y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y} + (x+y+z)\frac{\partial}{\partial z}$$

Let $M \subset \mathbb{R}^3$ be a cylinder $\{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}.$

- (a) Show that $X \in \mathfrak{X}(M)$.
- (b) Express X in terms of $\frac{\partial}{\partial \varphi}$ and $\frac{\partial}{\partial h}$, where (φ, h) are cylindrical coordinates on M, i.e.

$$(x, y, z) = (\cos \varphi, \sin \varphi, h)$$

4.4. (a) (*) Find vector fields $X, Y \in \mathfrak{X}(\mathbb{T}^2)$ such that $\{X(p), Y(p)\}$ is a basis for $T_p \mathbb{T}^2$ for all $p \in \mathbb{T}^2$.

Hint: you may embed the torus \mathbb{T}^2 into \mathbb{R}^3 as a surface of revolution.

(b) Find vector fields $X, Y, Z \in \mathfrak{X}(S^3)$ such that $\{X(p), Y(p), Z(p)\}$ is a basis for T_pS^3 for all $p \in S^3$.

Hint: you may use the embedding of S^3 described in Exercise 3.3.