Riemannian Geometry IV, Solutions 5 (Week 5)

5.1. (\star) Let M be a smooth manifold and let $X, Y, Z \in \mathfrak{X}(M)$ be vector fields on M, and let $a \in \mathbb{R}$. Prove the following identities concerning the Lie bracket:
(a) Linearity $[X+a Y, Z]=[X, Z]+a[Y, Z]$.
(b) Anti-symmetry $[Y, X]=-[X, Y]$.
(c) Jacobi identity $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$.

Solution:

(a) Note that $Z(a g)=a Z(g)$ for constants $a \in \mathbb{R}$ since

$$
\frac{\partial}{\partial x_{i}}(a g)=a \frac{\partial g}{\partial x_{i}}
$$

and the same holds for linear combinations of these basis vector fields. Thus, we have

$$
\begin{aligned}
{[X+a Y, Z] f=} & (X+a Y) Z f-Z(X+a Y) f \\
& =X Z f+a Y Z f-Z X f-a Z Y f=(X Z f-Z X f)+a(Y Z f-Z Y f) \\
& =[X, Z] f+a[Y, Z] f
\end{aligned}
$$

(b) We have

$$
[X, Y] f=X Y f-Y X f=-(Y X f-X Y f)=-[Y, X] f
$$

for all $f \in C^{\infty}(M)$. This implies that $[X, Y]=-[Y, X]$.
(c) Using (b), it is enough to show that

$$
[[X, Y], Z]=[X,[Y, Z]]+[Y,[Z, X]]
$$

The left hand side, applied to a function $f \in C^{\infty}(M)$, is

$$
[[X, Y], Z] f=[X, Y] Z f-Z[X, Y] f=X Y Z f-Y X Z f-Z X Y f+Z Y X f
$$

The right hand side, applied to the same function, is

$$
\begin{aligned}
& {[X,[Y, Z]] f+[Y,[Z, X]] f=} \\
& \quad=X Y Z f-X Z Y f-Y Z X f+Z Y X f+Y Z X f-Y X Z f-Z X Y f+X Z Y f= \\
& \\
& =X Y Z f+Z Y X f-Y X Z f-Z X Y f
\end{aligned}
$$

which is notably the same. This proves Jacobi identity.
The Hairy Ball Theorem. Let $S^{n} \subset \mathbb{R}^{n+1}$ denote the unit n-sphere. If n is even, then there is no continuous non-vanishing vector field $X \in \mathfrak{X}\left(S^{n}\right)$.
This theorem tells us for example that it can not be windy everywhere at once on Earth's surface - at any given moment, the horizontal wind speed somewhere must be zero.

Exercise $4.4(\mathrm{~b})$ shows that The Hairy Ball Theorem does not hold in odd dimensions. Moreover, it can be generalized in the following way.
5.2. (a) Find a non-vanishing vector field on $S^{2 m+1}$ for arbitrary m.
(b) Construct $2 m+1$ vector fields on $S^{2 m+1}$ forming a basis of $T_{p} S^{2 m+1}$ at every point $p \in S^{2 m+1}$.

Solution:

(a) Embedding $S^{2 m-1}$ as the unit sphere inside $\mathbb{R}^{2 m}$ (with coordinates $x_{1}, \ldots, x_{2 m}$), we may take the vector field given by

$$
\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots,-x_{2 m}, x_{2 m-1}\right)
$$

(cf. Exercise 4.4(b)).
(b) The solution is similar to one of Exercise 4.4(b). Permuting the coordinates of the field above, you may get plenty of nowhere-vanishing fields. Then, choosing carefully $2 n-1$ linearly independent (at every point!) ones, you get required basis.

5.3. Tangent space of a matrix group as a Lie algebra

Let $G \subset M_{n}(\mathbb{R})$ be a matrix group and $h \in G$. We consider the tangent space $T_{h} G$ as a subspace of $M_{n}(\mathbb{R})$.
(a) Let $g(s) \in G$ be a path in G with $g(0)=I$, and let $g^{\prime}(0)=A \in T_{I} G \subset M_{n}(\mathbb{R})$. Let $\gamma(s)=g^{-1}(s)$. Show that $\gamma^{\prime}(0)=-A$.
(b) Let $g \in G$ and $A \in T_{I} G \subset M_{n}(\mathbb{R})$. Show that $g A g^{-1} \in T_{I} G$. (The map $\operatorname{Ad}_{g}: T_{I} G \rightarrow T_{I} G$ sending $A \in T_{I} G$ to $g A g^{-1} \in T_{I} G$ is called an adjoint representation of $\left.G\right)$.
(c) Show that the tangent space $T_{h} G$ at $h \in G$ can be obtained from $T_{I} G$ by multiplying all the matrices from $T_{I} G$ by h from the left: $T_{h} G=h T_{I} G$. Show that $T_{h} G$ can also be obtained from $T_{I} G$ by multiplying all the matrices from $T_{I} G$ by h from the right.
(d) Show that for every $A \in T_{I} G$ there exists a vector field $X \in \mathfrak{X}(G)$ with $X(I)=A$. Hint: try to find a left-invariant field, i.e. a field satisfying $X(g h)=g X(h)$ for $g, h \in G$.
(e) Show that if $A, B \in T_{I} G$, then $[A, B]=A B-B A$ is also an element of $T_{I} G$.

Remark: Exercise 5.3 can be generalized to any Lie group, we will see it in the next term.

Solution:

(a) Differentiating the equality $\gamma(s) g(s)=I$ at $s=0$ we get $\gamma^{\prime}(0)+g^{\prime}(0)=0$, which implies $\gamma^{\prime}(0)=$ $-g^{\prime}(0)=-A$.
(b) Let $A=\gamma^{\prime}(0)$ for some curve $\gamma(s)$ in G through I at $s=0$. Then $g A g^{-1}$ is the tangent vector at 0 of the curve $g \gamma(s) g^{-1}$.
(c) Let $\gamma(s)$ be a curve in $G, \gamma(0)=I$, and let $h \in G$. Then $h \gamma(s)$ is also a curve in G, however $h \gamma(0)=h$, and thus the derivative of $h \gamma(s)$ at $s=0$ is an element of $T_{h} G$. Differentiating this curve at 0 , we get

$$
h \gamma^{\prime}(0)=\left.\frac{d}{d s} h \gamma(s)\right|_{s=0} \in T_{h} G
$$

Thus, for any $A \in T_{I} G$ we have $h A \in T_{h} G$. Since the map $A \rightarrow h A$ is clearly injective and the dimensions of $T_{I} G$ and $T_{h} G$ coinside, we see that $T_{h} G=h T_{I} G$. In exactly the same way we can see that $T_{h} G=\left(T_{I} G\right) h$ (note: the two maps $T_{I} G \rightarrow T_{h} G$ defined by $A \rightarrow h A$ and $A \rightarrow A h$ are distinct).
(d) Take $A \in T_{I} G$. Define $X=X_{A} \in \mathfrak{X}(G)$ as $X(h)=h A$. According to (c), $X(h) \in T_{h} G$, and clearly $X(h)$ depends on h smoothly.
(e) If $A, B \in T_{I} G$, then $[A, B]=A B-B A=\left[X_{A}, X_{B}\right](I) \in T_{I} G$, where $X_{A}, X_{B} \in \mathfrak{X}(G)$ are defined in (d).
5.4. (\star) Let \mathbb{H}^{2} be the upper half-plane model of hyperbolic 2-space. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{R})$ and define the map

$$
f_{A}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f_{A}(z)=\frac{a z+b}{c z+d}
$$

(a) Show that $f_{A} \circ f_{B}=f_{A B}$.
(b) Show that for every $A \in S L_{2}(\mathbb{R})$ the map f_{A} is an isometry of \mathbb{H}^{2}.

Hint: show first that

$$
\operatorname{Im}\left(f_{A}(z)\right)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}
$$

Solution:

(a) This can be done by an explicit computation: if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), B=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in S L_{2}(\mathbb{R})$, then

$$
\begin{aligned}
f_{A} \circ f_{B}(z)=f_{A}\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)= & \frac{a\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)+b}{c\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)+d}= \\
& =\frac{a\left(a^{\prime} z+b^{\prime}\right)+b\left(c^{\prime} z+d^{\prime}\right)}{c\left(a^{\prime} z+b^{\prime}\right)+d\left(c^{\prime} z+d^{\prime}\right)}=\frac{\left(a a^{\prime}+b c^{\prime}\right) z+\left(a b^{\prime}+b d^{\prime}\right)}{\left(c a^{\prime}+d c^{\prime}\right) z+\left(c b^{\prime}+d d^{\prime}\right)}=f_{A B}(z)
\end{aligned}
$$

(b) We first follow the hint:

$$
\begin{aligned}
\operatorname{Im}\left(f_{A}(z)\right) & =\operatorname{Im}\left(\frac{a z+b}{c z+d}\right) \\
& =\operatorname{Im}\left(\frac{(a z+b)(c \bar{z}+d)}{|c z+d|^{2}}\right) \\
& =\operatorname{Im}\left(\frac{a c|z|^{2}+b d+a d z+b c \bar{z}}{|c z+d|^{2}}\right) \\
& =\operatorname{Im}\left(\frac{i(a d-b c) \operatorname{Im}(z)}{|c z+d|^{2}}\right) \\
& =\frac{\operatorname{Im}(z)}{|c z+d|^{2}} .
\end{aligned}
$$

Now we want to show that f_{A} is an isometry of \mathbb{H}^{2}, in other words, that it preserves the Riemannian metric. In fact, it is enough to show that it preserves the Riemannian norm $\|\cdot\|^{2}=\langle\cdot, \cdot\rangle$.
First, we need to calculate the differential of f_{A}. Let $z(t)$ be a curve in $\mathbb{H}^{2} \subset \mathbb{C}, z: \mathbb{R} \rightarrow \mathbb{H}^{2}$, then

$$
\begin{aligned}
D f_{A}\left(z^{\prime}(0)\right) & =\left.\frac{d}{d t}\right|_{t=0} \frac{a z(t)+b}{c z(t)+d} \\
& =\frac{(a d-b c) z^{\prime}(0)}{(c z(0)+d)^{2}} \\
& =\frac{z^{\prime}(0)}{(c z(0)+d)^{2}} .
\end{aligned}
$$

Then we see that

$$
\begin{aligned}
\left\langle D f_{A}\left(z^{\prime}(0)\right), D f_{A}\left(z^{\prime}(0)\right)\right\rangle & =\frac{1}{\left[\operatorname{Im} f_{A}(z(0))\right]^{2}} \frac{\left|z^{\prime}(0)\right|^{2}}{|(c z(0)+d)|^{4}} \\
& =\frac{\left|z^{\prime}(0)\right|^{2}}{[\operatorname{Im} z(0)]^{2}} \\
& =\left\langle z^{\prime}(0), z^{\prime}(0)\right\rangle .
\end{aligned}
$$

Therefore, f_{A} preserves the Riemannian norm, and hence it is an isometry.

