Riemannian Geometry IV, Homework 5 (Week 5)

Due date for starred problems: Friday, November 22.
5.1. (\star) Let M be a smooth manifold and let $X, Y, Z \in \mathfrak{X}(M)$ be vector fields on M, and let $a \in \mathbb{R}$. Prove the following identities concerning the Lie bracket:
(a) Linearity $[X+a Y, Z]=[X, Z]+a[Y, Z]$.
(b) Anti-symmetry $[Y, X]=-[X, Y]$.
(c) Jacobi identity $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$.

The Hairy Ball Theorem. Let $S^{n} \subset \mathbb{R}^{n+1}$ denote the unit n-sphere. If n is even, then there is no continuous non-vanishing vector field $X \in \mathfrak{X}\left(S^{n}\right)$.
This theorem tells us for example that it can not be windy everywhere at once on Earth's surface - at any given moment, the horizontal wind speed somewhere must be zero.

Exercise $4.4(\mathrm{~b})$ shows that The Hairy Ball Theorem does not hold in odd dimensions. Moreover, it can be generalized in the following way.
5.2. (a) Find a non-vanishing vector field on $S^{2 m+1}$ for arbitrary m.
(b) Construct $2 m+1$ vector fields on $S^{2 m+1}$ forming a basis of $T_{p} S^{2 m+1}$ at every point $p \in S^{2 m+1}$.
5.3. Tangent space of a matrix group as a Lie algebra

Let $G \subset M_{n}(\mathbb{R})$ be a matrix group and $h \in G$. We consider the tangent space $T_{h} G$ as a subspace of $M_{n}(\mathbb{R})$.
(a) Let $g(s) \in G$ be a path in G with $g(0)=I$, and let $g^{\prime}(0)=A \in T_{I} G \subset M_{n}(\mathbb{R})$. Let $\gamma(s)=g^{-1}(s)$. Show that $\gamma^{\prime}(0)=-A$.
(b) Let $g \in G$ and $A \in T_{I} G \subset M_{n}(\mathbb{R})$. Show that $g A g^{-1} \in T_{I} G$. (The map $\operatorname{Ad}_{g}: T_{I} G \rightarrow T_{I} G$ sending $A \in T_{I} G$ to $g A g^{-1} \in T_{I} G$ is called an adjoint representation of G).
(c) Show that the tangent space $T_{h} G$ at $h \in G$ can be obtained from $T_{I} G$ by multiplying all the matrices from $T_{I} G$ by h from the left: $T_{h} G=h T_{I} G$. Show that $T_{h} G$ can also be obtained from $T_{I} G$ by multiplying all the matrices from $T_{I} G$ by h from the right.
(d) Show that for every $A \in T_{I} G$ there exists a vector field $X \in \mathfrak{X}(G)$ with $X(I)=A$. Hint: try to find a left-invariant field, i.e. a field satisfying $X(g h)=g X(h)$ for $g, h \in G$.
(e) Show that if $A, B \in T_{I} G$, then $[A, B]=A B-B A$ is also an element of $T_{I} G$.

Remark: Exercise 5.3 can be generalized to any Lie group, we will see it in the next term.
5.4. (\star) Let \mathbb{H}^{2} be the upper half-plane model of hyperbolic 2-space. Let $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{R})$ and define the map

$$
f_{A}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f_{A}(z)=\frac{a z+b}{c z+d}
$$

(a) Show that $f_{A} \circ f_{B}=f_{A B}$.
(b) Show that for every $A \in S L_{2}(\mathbb{R})$ the map f_{A} is an isometry of \mathbb{H}^{2}.

Hint: show first that

$$
\operatorname{Im}\left(f_{A}(z)\right)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}
$$

