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7.1. Covariant derivative in Rn

We define covariant derivative ∇vX of a vector field X in the direction of vector v ∈ TpRn =
Rn at point p in Rn as

(∇vX)(p) = lim
t→0

X(p+ tv)−X(p)

t

Show the following properties of the covariant derivative in Rn:

(a) ∇v(X + Y ) = ∇v(X) +∇v(Y );

(b) ∇v(fX) = v(f)X(p) + f(p)∇vX, where f ∈ C∞(Rn), and v(f) denotes the derivative
of f in direction v;

(c) ∇αv+βwX = α∇vX + β∇wX for α, β ∈ R;

(d) v(〈X, Y 〉) = 〈∇vX, Y 〉+ 〈X,∇vY 〉, where 〈·, ·〉 denotes the Euclidean dot-product, and
〈X, Y 〉 is considered as a smooth function on Rn;

(e) ∇XY − ∇yX = [X, Y ], where X, Y,∇XY,∇YX ∈ X(Rn), and (∇XY )(p) is defined as
(∇X(p)Y )(p).

Solution:

We will check the equalities by computing in coordinates and using that

∇vX =
n∑
i=1

v(ai)
∂

∂xi

∣∣∣
p

for X =
∑n

i=1 ai(p)
∂
∂xi

. Denote also Y =
∑n

i=1 bi(p)
∂
∂xi

.

(a) use that v(ai + bi)(p) = v(ai)(p) + v(bi)(p);

(b) it is the Leibniz rule applied to each term of
∑n

i=1 v(f · ai) ∂
∂xi

;

(c) derivatives form a vector space;

(d)

v(〈X,Y 〉) = v
(
〈
n∑
i=1

ai
∂

∂xi
,
n∑
j=1

bj
∂

∂xj
〉
)

= v(
n∑
i=1

aibi) =

Leibniz rule
=

n∑
i=1

(v(ai)bi(p) + ai(p)v(bi)) = 〈∇vX,Y 〉+ 〈X,∇vY 〉;

(e) ∇XY −∇yX =
∑n

i=1X(bi)
∂
∂xi
−
∑n

i=1 Y (ai)
∂
∂xi

=
∑

i,j aj
∂bi
∂xj

∂
∂xi
−
∑

i,j bj
∂ai
∂xj

∂
∂xi

= [X,Y ]
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7.2. (?) Let Hn be the upper half-space model of hyperbolic n-space,

Hn = {x ∈ Rn | xn > 0}, g(v, w) =
〈v, w〉
x2n

,

where v, w ∈ TxHn, and we write g for the metric on Hn identifying each tangent space
canonically with Rn.

Calculate all Christoffel symbols Γkij for the global coordinate chart given by the identity
map ϕ : Hn → Rn, ϕ(x) = x.

Solution:

Using the standard global coordinate chart on Hn, the matrix (gij) is diagonal with all diagonal
entries gii = 1/x2n. We now use the formula

Γkij =
1

2

∑
m

gkm(gim,j + gjm,i − gij,m),

where

gab,c =
∂

∂xc
gab and (gij) = (gij)

−1

Since in our case the matrix (gij) is diagonal, its inverse is also diagonal, and thus we have

gii = x2n

Looking at the formula for Christoffel symbols, we see that we must have k = m for any non-zero
terms, and also at least one of i, j, k has to be equal to n.

More precisely, there are four cases giving potentially non-zero answers: i = j 6= n, k = n; i = k 6=
n, j = n; j = k 6= n, i = n; i = j = k = n. Of these, the second and the third are really the same
since Γkij = Γkji.

Then it is a simple matter of differentiation and we see that

Γnnn =
−1

xn
= Γiin = Γini, Γnii =

1

xn

whenever i 6= n, with all other Christoffel symbols being 0.

7.3. (a) Calculate all Christoffel symbols Γkij for the unit ball model B2 of hyperbolic plane,
again for the global coordinate chart given by the identity map ϕ : B2 → R2, ϕ(x) = x.
Recall the the metric is given by

g(v, w) =
4

(1− ‖x‖2)2
〈v, w〉

(b) Do the same for the unit ball model Bn of hyperbolic n-space.

Solution:

(a) Parametrize the unit disc by

ϕ−1(r, ϑ) = (r cosϑ, r sinϑ), r ∈ (0, 1), ϑ ∈ (0, 2π)
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Then

∂

∂r
= (cosϑ, sinϑ),

∂

∂ϑ
= (−r sinϑ, r cosϑ),

and thus we have

(gij) =

(
4

(1−r2)2 0

0 4r2

(1−r2)2

)
,

which implies

g11,1 =
16r

(1− r2)3
, g22,1 =

8r(1 + r2)

(1− r2)3
,

and all the others gij,k equal zero.

Now we can easily compute Christoffel symbols:

Γ2
11 = Γ1

12 = Γ1
21 = Γ2

22 = 0,

and

Γ1
11 =

2r

1− r2
, Γ2

12 = Γ2
21 =

1 + r2

r(1− r2)
, Γ1

22 = −r(1 + r2)

1− r2

(b) The computations are similar to ones from previous exercises, but a bit bulky. One can
parametrize a unit ball by

ϕ−1(r, ϑ2, . . . , ϑn) = (r sinϑn . . . sinϑ2, r sinϑn . . . sinϑ3 cosϑ2, r sinϑn . . . sinϑ4 cosϑ3, . . . , r cosϑn),

where r ∈ (0, 1), ϑ2 ∈ (0, 2π), ϑi ∈ (0, π) for i > 2. Then one can compute the metric (it will
be diagonal, and gjj depend on r and ϑi for i > j only), and then compute the Christoffel
symbols.
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