Riemannian Geometry IV, Solutions 7 (Week 7)

7.1. Covariant derivative in \mathbb{R}^{n}

We define covariant derivative $\nabla_{v} X$ of a vector field X in the direction of vector $v \in T_{p} \mathbb{R}^{n}=$ \mathbb{R}^{n} at point p in \mathbb{R}^{n} as

$$
\left(\nabla_{v} X\right)(p)=\lim _{t \rightarrow 0} \frac{X(p+t v)-X(p)}{t}
$$

Show the following properties of the covariant derivative in \mathbb{R}^{n} :
(a) $\nabla_{v}(X+Y)=\nabla_{v}(X)+\nabla_{v}(Y)$;
(b) $\nabla_{v}(f X)=v(f) X(p)+f(p) \nabla_{v} X$, where $f \in \mathbb{C}^{\infty}\left(\mathbb{R}^{n}\right)$, and $v(f)$ denotes the derivative of f in direction v;
(c) $\nabla_{\alpha v+\beta w} X=\alpha \nabla_{v} X+\beta \nabla_{w} X$ for $\alpha, \beta \in \mathbb{R}$;
(d) $v(\langle X, Y\rangle)=\left\langle\nabla_{v} X, Y\right\rangle+\left\langle X, \nabla_{v} Y\right\rangle$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean dot-product, and $\langle X, Y\rangle$ is considered as a smooth function on \mathbb{R}^{n};
(e) $\nabla_{X} Y-\nabla_{y} X=[X, Y]$, where $X, Y, \nabla_{X} Y, \nabla_{Y} X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$, and $\left(\nabla_{X} Y\right)(p)$ is defined as $\left(\nabla_{X(p)} Y\right)(p)$.

Solution:

We will check the equalities by computing in coordinates and using that

$$
\nabla_{v} X=\left.\sum_{i=1}^{n} v\left(a_{i}\right) \frac{\partial}{\partial x_{i}}\right|_{p}
$$

for $X=\sum_{i=1}^{n} a_{i}(p) \frac{\partial}{\partial x_{i}}$. Denote also $Y=\sum_{i=1}^{n} b_{i}(p) \frac{\partial}{\partial x_{i}}$.
(a) use that $v\left(a_{i}+b_{i}\right)(p)=v\left(a_{i}\right)(p)+v\left(b_{i}\right)(p)$;
(b) it is the Leibniz rule applied to each term of $\sum_{i=1}^{n} v\left(f \cdot a_{i}\right) \frac{\partial}{\partial x_{i}}$;
(c) derivatives form a vector space;
(d)

$$
\begin{aligned}
v(\langle X, Y\rangle)=v\left(\left\langle\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}},\right.\right. & \left.\left.\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}\right\rangle\right)=v\left(\sum_{i=1}^{n} a_{i} b_{i}\right)= \\
& \stackrel{\text { Leibniz rule }}{=} \sum_{i=1}^{n}\left(v\left(a_{i}\right) b_{i}(p)+a_{i}(p) v\left(b_{i}\right)\right)=\left\langle\nabla_{v} X, Y\right\rangle+\left\langle X, \nabla_{v} Y\right\rangle ;
\end{aligned}
$$

(e) $\nabla_{X} Y-\nabla_{y} X=\sum_{i=1}^{n} X\left(b_{i}\right) \frac{\partial}{\partial x_{i}}-\sum_{i=1}^{n} Y\left(a_{i}\right) \frac{\partial}{\partial x_{i}}=\sum_{i, j} a_{j} \frac{\partial b_{i}}{\partial x_{j}} \frac{\partial}{\partial x_{i}}-\sum_{i, j} b_{j} \frac{\partial a_{i}}{\partial x_{j}} \frac{\partial}{\partial x_{i}}=[X, Y]$
7.2. (\star) Let \mathbb{H}^{n} be the upper half-space model of hyperbolic n-space,

$$
\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{n}>0\right\}, \quad g(v, w)=\frac{\langle v, w\rangle}{x_{n}^{2}},
$$

where $v, w \in T_{x} \mathbb{H}^{n}$, and we write g for the metric on \mathbb{H}^{n} identifying each tangent space canonically with \mathbb{R}^{n}.
Calculate all Christoffel symbols $\Gamma_{i j}^{k}$ for the global coordinate chart given by the identity $\operatorname{map} \varphi: \mathbb{H}^{n} \rightarrow \mathbb{R}^{n}, \varphi(x)=x$.

Solution:

Using the standard global coordinate chart on \mathbb{H}^{n}, the matrix $\left(g_{i j}\right)$ is diagonal with all diagonal entries $g_{i i}=1 / x_{n}^{2}$. We now use the formula

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{m} g^{k m}\left(g_{i m, j}+g_{j m, i}-g_{i j, m}\right),
$$

where

$$
g_{a b, c}=\frac{\partial}{\partial x_{c}} g_{a b} \quad \text { and } \quad\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}
$$

Since in our case the matrix $\left(g_{i j}\right)$ is diagonal, its inverse is also diagonal, and thus we have

$$
g^{i i}=x_{n}^{2}
$$

Looking at the formula for Christoffel symbols, we see that we must have $k=m$ for any non-zero terms, and also at least one of i, j, k has to be equal to n.
More precisely, there are four cases giving potentially non-zero answers: $i=j \neq n, k=n ; i=k \neq$ $n, j=n ; j=k \neq n, i=n ; i=j=k=n$. Of these, the second and the third are really the same since $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
Then it is a simple matter of differentiation and we see that

$$
\Gamma_{n n}^{n}=\frac{-1}{x_{n}}=\Gamma_{i n}^{i}=\Gamma_{n i}^{i}, \quad \Gamma_{i i}^{n}=\frac{1}{x_{n}}
$$

whenever $i \neq n$, with all other Christoffel symbols being 0 .
7.3. (a) Calculate all Christoffel symbols $\Gamma_{i j}^{k}$ for the unit ball model \mathbb{B}^{2} of hyperbolic plane, again for the global coordinate chart given by the identity map $\varphi: \mathbb{B}^{2} \rightarrow \mathbb{R}^{2}, \varphi(x)=x$. Recall the the metric is given by

$$
g(v, w)=\frac{4}{\left(1-\|x\|^{2}\right)^{2}}\langle v, w\rangle
$$

(b) Do the same for the unit ball model \mathbb{B}^{n} of hyperbolic n-space.

Solution:

(a) Parametrize the unit disc by

$$
\varphi^{-1}(r, \vartheta)=(r \cos \vartheta, r \sin \vartheta), \quad r \in(0,1), \vartheta \in(0,2 \pi)
$$

Then

$$
\begin{aligned}
\frac{\partial}{\partial r} & =(\cos \vartheta, \sin \vartheta) \\
\frac{\partial}{\partial \vartheta} & =(-r \sin \vartheta, r \cos \vartheta)
\end{aligned}
$$

and thus we have

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
\frac{4}{\left(1-r^{2}\right)^{2}} & 0 \\
0 & \frac{4 r^{2}}{\left(1-r^{2}\right)^{2}}
\end{array}\right),
$$

which implies

$$
g_{11,1}=\frac{16 r}{\left(1-r^{2}\right)^{3}}, \quad g_{22,1}=\frac{8 r\left(1+r^{2}\right)}{\left(1-r^{2}\right)^{3}},
$$

and all the others $g_{i j, k}$ equal zero.
Now we can easily compute Christoffel symbols:

$$
\Gamma_{11}^{2}=\Gamma_{12}^{1}=\Gamma_{21}^{1}=\Gamma_{22}^{2}=0,
$$

and

$$
\Gamma_{11}^{1}=\frac{2 r}{1-r^{2}}, \quad \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1+r^{2}}{r\left(1-r^{2}\right)}, \quad \Gamma_{22}^{1}=-\frac{r\left(1+r^{2}\right)}{1-r^{2}}
$$

(b) The computations are similar to ones from previous exercises, but a bit bulky. One can parametrize a unit ball by
$\varphi^{-1}\left(r, \vartheta_{2}, \ldots, \vartheta_{n}\right)=\left(r \sin \vartheta_{n} \ldots \sin \vartheta_{2}, r \sin \vartheta_{n} \ldots \sin \vartheta_{3} \cos \vartheta_{2}, r \sin \vartheta_{n} \ldots \sin \vartheta_{4} \cos \vartheta_{3}, \ldots, r \cos \vartheta_{n}\right)$,
where $r \in(0,1), \vartheta_{2} \in(0,2 \pi), \vartheta_{i} \in(0, \pi)$ for $i>2$. Then one can compute the metric (it will be diagonal, and $g_{j j}$ depend on r and ϑ_{i} for $i>j$ only), and then compute the Christoffel symbols.

