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Riemannian Geometry IV, Solutions 8 (Week 8)

8.1. Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unit sphere inside 3-space, with the induced
metric from the standard Euclidean metric on R3.

(a) (?) Let c be the curve on S2 given by

c(t) =

(
1√
2
,
sin t√

2
,
cos t√

2

)
,

and let v ∈ Tc(0)S2 be given by

v = (0, 1, 0) ∈ Tc(0)S2 ⊂ Tc(0)R3.

Find the unique X ∈ Xc(S
2) that is parallel along c and X(0) = v.

(b) Let γ1, γ2 : [0, π] → S2 be two curves connecting the north and south poles N and S defined
by

γ1(t) = (0, sin t, cos t)

γ2(t) = (sin t, 0, cos t)

Show that the isomorphisms of TN (S2) and TS(S2) given by parallel transports along γ1 and
γ2 are different, i.e. find u ∈ TN (S2) such that Pγ1(u) 6= Pγ2(u).

Solution:

(a) We will compute using the following plan:

• write X(t) =
∑
ai(t)

∂
∂xi

;

• calculate Christoffel symbols;

• use Γkij to find the action of the covariant derivative D
dt on X;

• write a system of ODEs using the “parallel condition”;

• solve it;

• find X.

In class we already computed the Christoffel symbols for S2. Recall that we gave an almost global
coordinate chart

ψ−1 : (ϕ, ϑ) 7→ (cosϕ sinϑ, sinϕ sinϑ1, cosϑ),

where (ϕ, ϑ) ∈ (0, 2π)× (0, π). We calculated that

Γ2
11 = − cos(ϑ) sin(ϑ), Γ1

12 = Γ1
21 = cot(ϑ)

with all other Christoffel symbols equal to 0.

Now, let us consider a similar chart:

ψ−1 : (ϕ, ϑ) 7→ (cosϑ, sinϕ sinϑ1, cosϕ sinϑ),
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i.e. we interchange coordinates x and z. Clearly, this does not affect Christoffel symbols, but gives a
better equation for the curve c(t): we can write

c(t) = ψ−1(t, π/4),

so that

c′(t) =
∂

∂ϕ

Now we want to translate the “parallel condition” into a system of ODEs. So let X(t) ∈ Tc(t)S2 be a
vector field along the curve c. We can write

X(t) = a(t)
∂

∂ϕ
+ b(t)

∂

∂ϑ

for some smooth functions a and b.

The parallel condition says that

D

dt
X(t) =

D

dt

(
a(t)

∂

∂ϕ
+ b(t)

∂

∂ϑ

)
= 0,

and using the properties of D
dt this is the same as requiring

a(t)

(
∇ ∂

∂ϕ

∂

∂ϕ

)
+ a′(t)

∂

∂ϕ
+ b(t)

(
∇ ∂

∂ϕ

∂

∂ϑ

)
+ b′(t)

∂

∂ϑ
= 0

Here we need the Christoffel symbols. They tell us that

∇ ∂
∂ϕ

∂

∂ϑ
= cot(ϑ)

∂

∂ϕ
,

∇ ∂
∂ϕ

∂

∂ϕ
= − cos(ϑ) sin(ϑ)

∂

∂ϑ
.

Furthermore, since ϑ = π/4 is constant on the curve c, our parallel condition becomes

−1

2
a(t)

∂

∂ϑ
+ a′(t)

∂

∂ϕ
+ b(t)

∂

∂ϕ
+ b′(t)

∂

∂ϑ
= 0

Since { ∂∂ϕ ,
∂
∂ϑ} form a basis of the tangent space at each point along c, we have

b′(t)− 1

2
a(t) = 0, a′(t) + b(t) = 0

Solving this (and you definitely know how to do it), we get:

a(t) = A cos(t/
√

2) +B sin(t/
√

2), b(t) = A
√

2 sin(t/
√

2)−B
√

2 cos(t
√

2)

for arbitrary constants A and B. In our case we are told what X(0) is, and that provides an initial
condition so that we can find A and B. We have

X(0) = v =
√

2c′(0) =
√

2
∂

∂ϕ
,

so we see that A =
√

2 and B = 0.

Hence,

X(t) =
√

2 cos(t/
√

2)
∂

∂ϕ
+ sin(t/

√
2)

∂

∂ϑ
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This would be a good place to stop, but we can also write our field in three coordinates ( ∂
∂x ,

∂
∂y ,

∂
∂z ), so

we observe that in terms of these ambient coordinates

∂

∂ϕ

∣∣∣∣
c(t)

=

(
0,

1√
2

cos t,− 1√
2

sin t

)
,

∂

∂ϑ

∣∣∣∣
c(t)

=

(
− 1√

2
,

1√
2

sin t,
1√
2

cos t

)
,

and we can just substitute these into the expression that we already have:

X(t) =
√

2 cos(t/
√

2)

(
0,

1√
2

cos t,− 1√
2

sin t

)
+ sin(t/

√
2)

(
− 1√

2
,

1√
2

sin t,
1√
2

cos t

)
(b) Consider two vectors v1, v2 ∈ TN (S2), v1 = (1, 0, 0) = γ′1(0), v2 = (0, 1, 0) = γ′2(0). We know that γ1 is

geodesic, so the field γ′1 is parallel along γ1. In particular, Pγ1(v1) = γ′1(π) = (−1, 0, 0).

Note that by Prop. 4.18 from the lectures Pγ is a linear isometry for any curve γ (see also Exercise 8.3).
In particular, if X(t) is a parallel vector field along γ1 with X(0) = v2 = (0, 1, 0), the vectors γ′1(t)
and X(t) form an orthonormal basis of Tγ1(t)S

2. By continuity, one can see that X(t) ≡ (0, 1, 0),
and, in particular, Pγ1(v2) = (0, 1, 0). Now, since γ2 is geodesic, the field γ′2 is parallel along γ2, so
Pγ2(v2) = γ′2(π) = (0,−1, 0) 6= Pγ1(v2).

8.2. Let H2 = {z ∈ C | Im(z) > 0} be the upper-half plane with its usual hyperbolic metric. Let c be
the curve in H2 given by c(t) = i+ t for t ∈ R. Identifying the tangent space to each point of H2 in
the usual way with C, find the parallel vector field X(t) ∈ C = Tc(t)H2 along c, which is determined
by its value at t = 0:

X(0) = 1 ∈ C = TiH2.

Solution: This question follows the same lines as the Exercise 8.1(a), so we move a bit faster.

Let

X(t) = a(t)
∂

∂x
+ b(t)

∂

∂y

be a parallel vector field along the curve c. Now c′(t) = ∂
∂x , so the parallel condition becomes

a′(t)
∂

∂x
+ a(t)

(
∇ ∂

∂x

∂

∂x

)
+ b′(t)

∂

∂y
+ b(t)

(
∇ ∂

∂x

∂

∂y

)
= 0

In Exercise 7.2 we computed the Christoffel symbols for the hyperbolic plane, so we know that

∇ ∂
∂x

∂

∂x
=

1

y

∂

∂y
and ∇ ∂

∂x

∂

∂y
=
−1

y

∂

∂x

Furthermore, the y-coordinate is fixed along c by y = 1. Thus, the parallel condition is equivalent to the
following system of ODEs:

a′(t)− b(t) = 0, b′(t) + a(t) = 0,

which has solution
a(t) = A cos t+B sin t, b(t) = −A sin t+B cos t

for arbitrary constants A,B. Now we know that X(0) = ∂
∂x , so we can find the constants A = 1, B = 0.

Thus,

X(t) = cos t
∂

∂x
− sin t

∂

∂y
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8.3. Let (M, g) be a Riemannian manifold and c : [a, b] → M be a smooth curve. Let D
dt denote the

corresponding covariant derivative along the curve c. Let X,Y be any two parallel vector fields X,Y
along c. Show that

d

dt
〈X,Y 〉 ≡ 0,

i.e., the parallel transport Pc : Tc(a)M → Tc(b)M is a linear isometry.

(a) (?) Prove this statement in the particular case when the vector fields X,Y along c have global
extensions X̃, Ỹ : M → TM .

(b) Do the same computation for a general case writing X(t), Y (t) in local coordinates.

Solution:

(a) Assume first that there are global vector fields X̃, Ỹ : M → TM with X̃(c(t)) = X(t) and Ỹ (c(t)) = Y (t)
for all t ∈ [a, b]. Since the Levi-Civita connection is Riemannian, we conclude that

d

dt

∣∣∣
t
〈X,Y 〉 =

d

dt

∣∣∣
t

(
〈X̃, Ỹ 〉 ◦ c

)
= c′(t)

(
〈X̃, Ỹ 〉

)
=

= 〈∇c′(t)X̃, Y (t)〉+ 〈X(t),∇c′(t)Ỹ 〉 = 〈D
dt
X(t), Y (t)〉+ 〈X(t),

D

dt
Y (t)〉 = 0

since the vector fields X,Y are parallel along c. But this implies that t 7→ 〈X(t), Y (t)〉 is a constant
function, i.e. the parallel transport Pc : Tc(a)M → Tc(b)M is an isometry, since

〈PcX(a), PcY (a)〉 = 〈X(b), Y (b)〉 = 〈X(a), Y (a)〉.

(b) Now we assume that X,Y do not have global extensions. Assume that there is a coordinate chart
ϕ : (x1, . . . , xn) : U → V with c([a, b]) ⊂ U . Then we can write

X(t) =
∑

aj(t)
∂

∂xj

∣∣∣
c(t)

, Y (t) =
∑

bj(t)
∂

∂xj

∣∣∣
c(t)

,

and we have

d

dt
〈X,Y 〉 =

d

dt

∑
j,k

ajbk

(
〈 ∂
∂xj

,
∂

∂xk
〉 ◦ c

) .

As before, the Riemannian property of the Levi-Civita connection yields

d

dt

(
〈 ∂
∂xj

,
∂

∂xk
〉 ◦ c

)
= 〈∇c′(t)

∂

∂xj
,
∂

∂xk

∣∣∣
c(t)
〉+ 〈 ∂

∂xj

∣∣∣
c(t)

,∇c′(t)
∂

∂xk
〉.

This implies that

d

dt
〈X,Y 〉 =

∑
j,k

(a′jbk + ajb
′
k)〈 ∂

∂xj
,
∂

∂xk
〉 ◦ c+ ajbk

(
〈∇c′(t)

∂

∂xj
,
∂

∂xk

∣∣∣
c(t)
〉+ 〈 ∂

∂xj

∣∣∣
c(t)

,∇c′(t)
∂

∂xk
〉
)

= 〈
∑
j

a′j(t)
∂

∂xj

∣∣∣
c(t)

+ aj(t)∇c′(t)
∂

∂xj
,
∑
k

bk(t)
∂

∂xk

∣∣∣
c(t)
〉+

+ 〈
∑
j

aj(t)
∂

∂xj

∣∣∣
c(t)

,
∑
k

b′k(t)
∂

∂xk

∣∣∣
c(t)

+ bk(t)∇c′(t)
∂

∂xk
〉 =

= 〈
∑
j

D

dt

(
aj

∂

∂xj
◦ c
)
, Y 〉+ 〈X,

∑
k

D

dt

(
ak

∂

∂xk
◦ c
)

= 〈D
dt
X, Y 〉+ 〈X, D

dt
Y 〉 = 0.
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Finally, if we need k coordinate charts U1, . . . , Uk to cover c([a, b]), i.e., if we have

c([a, b]) ⊂
k⋃
j=1

Uj

with a partition a < t1 < t2 · · · < tk−1 < b such that c(a), c(t1) ∈ U1, c(t1), c(t2) ∈ U2, . . . , c(tk−1), c(b) ∈
Uk, we conclude with the previous argument that d

dt 〈X,Y 〉 is constant on the segments [a, t1], [t1, t2], . . . , [tk−1, b],
and therefore, constant on all [a, b].

8.4. Given a curve c : [a, b] → R3, c(t) = (f(t), 0, g(t)) without self-intersections and with f(t) > 0 for
all t ∈ [a, b], let M ⊂ R3 denote the surface of revolution obtained by rotating this curve around the
z-axis. Let ∇ denote the Levi-Civita connection of M . An almost global coordinate chart is given
by ϕ : U → V := (a, b)× (0, 2π),

ϕ−1(x1, x2) = (f(x1) cosx2, f(x1) sinx2, g(x1)).

(a) Calculate the Christoffel symbols of this coordinate chart and express ∇ ∂
∂xi

∂
∂xj

in terms of the

basis ∂
∂xk

.

(b) Let γ1(t) = ϕ−1(x1 + t, x2). Calculate
D

dt
γ′1,

where D
dt denotes the covariant derivative along γ1. Show that this vector field along γ1 vanishes

if and only if the generating curve c of M is parametrized proportionally to arc-length. Note
that γ1 is obtained by rotation of c by a fixed angle. Derive from these facts that meridians of
a surface of revolution are geodesics if they are parametrized proportionally to arc length.

(c) Let γ2(t) = ϕ−1(x1, x2 + t). Calculate
D

dt
γ′2,

where D
dt denotes the covariant derivative along γ2. Show that this vector field along γ2 vanishes

if and only if f ′(x1) = 0. Explain that this implies that parallels of a surface of revolution are
geodesics if they have locally maximal or minimal radius.

Solution:

(a) We have

∂

∂x1

∣∣
ϕ−1(x1,x2)

= (f ′(x1) cosx2, f
′(x1) sinx2, g

′(x1)),

∂

∂x2

∣∣
ϕ−1(x1,x2)

= (−f(x1) sinx2, f(x1) cosx2, 0).

This implies that

(gij) =

(
(f ′(x1))2 + (g′(x1))2 0

0 f2(x1)

)
=

(
‖c′(x1)‖2 0

0 f2(x1)

)
and (

gij
)

=

(
1

(f ′(x1))2+(g′(x1))2
0

0 1
f2(x1)

)
.
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Consequently, we have

g11,1 = 2(f ′(x1)f ′′(x1) + g′(x1)g′′(x1)),

g22,1 = 2f(x1)f ′(x1),

and the Christoffel symbols are calculated as

Γ1
11 =

1

2
g11 (g11,1 + g11,1 − g11,1) =

f ′(x1)f ′′(x1) + g′(x1)g′′(x1)

(f ′(x1))2 + (g′(x1))2
,

Γ2
11 =

1

2
g22(g12,1 + g12,1 − g11,2) = 0,

Γ1
12 =

1

2
g11(g11,2 + g12,1 − g12,1) = 0 = Γ1

21,

Γ2
12 =

1

2
g22(g12,2 + g22,1 − g12,2) =

f ′(x1)

f(x1)
= Γ2

21,

Γ1
22 =

1

2
g11(g21,2 + g21,2 − g22,1) =

−f(x1)f ′(x1)

(f ′(x1))2 + (g′(x1))2
,

Γ2
22 =

1

2
g22(g22,2 + g22,2 − g22,2) = 0.

This implies that

∇ ∂
∂x1

∂

∂x1
=

f ′(x1)f ′′(x1) + g′(x1)g′′(x1)

(f ′(x1))2 + (g′(x1))2
∂

∂x1
,

∇ ∂
∂x1

∂

∂x2
=

f ′(x1)

f(x1)

∂

∂x2
,

∇ ∂
∂x2

∂

∂x1
=

f ′(x1)

f(x1)

∂

∂x2
,

∇ ∂
∂x2

∂

∂x2
=

−f(x1)f ′(x1)

(f ′(x1))2 + (g′(x1))2
∂

∂x1

(b) Note that we have

γ′1(t) =
∂

∂x1
|γ1(t).

This implies that(
D

dt
γ′1

)
(t) = ∇γ′1(t)

∂

∂x1
=

(
∇ ∂

∂x1

∂

∂x1

)
(γ1(t)) =

=
f ′(x1 + t)f ′′(x1 + t) + g′(x1 + t)g′′(x1 + t)

(f ′(x1 + t))2 + (g′(x1 + t))2
∂

∂x1
|γ1(t) ∈ Tγ1(t)M.

The condition D
dtγ
′
1 ≡ 0 is equivalent to f ′(t)f ′′(t) + g′(t)g′′(t) = 0 for all t ∈ (a, b), which in its turn is

equivalent to (f ′(t))2 + (g′(t))2 = const. Since

‖c′(t)‖2 = (f ′(t))2 + (g′(t))2,

we conclude that D
dtγ
′
1 vanishes identically if and only if c is parametrized proportionally to arc length.

Since c and γ1 are obtained from each other by an isometry of R3, namely a rotation by the angle
x2 around the z-axis, c is parametrized proportionally to arc length if and only if γ1 is parametrized
proportionally to arc length.

(c) We have

γ′2(t) =
∂

∂x2
|γ2(t).
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This implies that(
D

dt
γ′2

)
(t) = ∇γ′2(t)

∂

∂x2
=

(
∇ ∂

∂x2

∂

∂x2

)
(γ2(t)) =

−f(x1)f ′(x1)

(f ′(x1))2 + (g′(x1))2
∂

∂x1
|γ2(t) ∈ Tγ2(t)M.

Since f > 0, the condition D
dtγ
′
2 ≡ 0 is equivalent to f ′(x1) = 0, which holds, in particular, if f has a

local maximum or minimum at x1. Now observe that γ2 is a parallel of the surface of revolution M ,
and f(x1) is its radius (i.e., the distance to the z-axis).
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