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Riemannian Geometry IV, Solutions 8 (Week 8)

8.1. Let S? = {(z,y,2) € R? : 2% +4? + 22 = 1} be the unit sphere inside 3-space, with the induced
metric from the standard Euclidean metric on R3.

a) (%) Let ¢ be the curve on S? given by
(a) ()

c(t) = (

v =(0,1,0) € T (0)S* C Toi)R>.

sint COS>
2" V2 V2 )

G-

and let v € T, S? be given by

Find the unique X € X.(S?) that is parallel along ¢ and X (0) = v.

(b) Let v1,72 : [0,7] — S? be two curves connecting the north and south poles N and S defined
by

m(t) = (0,sint,cost)
v2(t) = (sint,0,cost)

Show that the isomorphisms of T (S?) and Ts(S?) given by parallel transports along ; and
Yo are different, i.e. find u € Ty (S?) such that P, (u) # Py, (u).

Solution:

(a) We will compute using the following plan:
o write X (t) = Zai(t)%;
e calculate Christoffel symbols;
e use Ffj to find the action of the covariant derivative % on X;
e write a system of ODEs using the “parallel condition”;
e solve it;
e find X.
In class we already computed the Christoffel symbols for S2. Recall that we gave an almost global
coordinate chart

P71 (,9) = (cos psind, sin psindy, cos 1),
where (¢, %) € (0,27) x (0,7). We calculated that

I'?, = —cos(¥)sin(v), Ti, =T4% = cot(¥)

with all other Christoffel symbols equal to 0.
Now, let us consider a similar chart:

1 (,9) = (cos ¥, sin psin 1y, cos psin 1),



i.e. we interchange coordinates x and z. Clearly, this does not affect Christoffel symbols, but gives a
better equation for the curve ¢(t): we can write

C(t) = ¢_1(t7 7T/4)’
so that 9
Cl(t) = %

Now we want to translate the “parallel condition” into a system of ODEs. So let X(¢) € Tc(t)SQ be a
vector field along the curve c. We can write

X(t) = a(t)% + b(t)a%

for some smooth functions a and b.
The parallel condition says that

%X(t) _ % (a(t)a 4 b(t)a) o,

and using the properties of % this is the same as requiring

MU<V&51>+J@SL+MU<V&5;>+Um5;:0

Here we need the Christoffel symbols. They tell us that

0 0
V%% = COt(’lg)%,

0 . 0
V%% = —cos(?) sm(ﬁ)%.

Furthermore, since ¢ = 7 /4 is constant on the curve ¢, our parallel condition becomes

1.8 .9 o ., .0

Since {%7 (%} form a basis of the tangent space at each point along ¢, we have

V(t) - sa(t) =0, d'(t)+bt)=0
Solving this (and you definitely know how to do it), we get:
a(t) = Acos(t/V2) + Bsin(t/v2), b(t) = AV2sin(t/v/2) — BV/2cos(tV/2)
for arbitrary constants A and B. In our case we are told what X (0) is, and that provides an initial

condition so that we can find A and B. We have

X(0) = v = V2 (0) = V2,
Oy
so we see that A = v/2 and B = 0.
Hence,

X(t) = \/icos(t/\[?)% + Sin(t/\/i)%



This would be a good place to stop, but we can also write our field in three coordinates (%, Ney 8%), SO

Jy
we observe that in terms of these ambient coordinates

3 = <O Lcost 1sint>
8(10 C(t) b \/i ) \/§ b
2 = ( sint, Ccos t)
oY c(t) \/> f f

and we can just substitute these into the expression that we already have:

1 1
X(t) = V2cos(t/V2 < cost, — sint) +sin(t/V2 ( sint, cost)
(6= V3eos(t/V3) (0. s cost,~— (112) (~ . sint.
(b) Consider two vectors vy, vy € T (S?), v1 = (1,0,0) = v, (0), v2 = (0, 1, 0) = 7%(0). We know that 77 is

geodesic, so the field ] is parallel along 7. In particular, P,, (vl) yi(m) = (-

,0,0).

1,0
Note that by Prop. 4.18 from the lectures P, is a linear isometry for any curve -y (see also Exercise 8.3).
In particular, if X (¢) is a parallel vector field along v; with X(0) = vy = (0, 1,0), the vectors 4 (t)
and X (t) form an orthonormal basis of 1%, 4)S?. By continuity, one can see that X () = (0,1,0),
and, in particular, P, (v2) = (0,1,0). Now, since s is geodesic, the field +5 is parallel along s, so
Py, (v2) = 75(m) = (0, —1,0) # Py, (v2).

8.2. Let H? = {2 € C | Im(z) > 0} be the upper-half plane with its usual hyperbolic metric. Let ¢ be
the curve in H? given by c(t) = i 4t for t € R. Identifying the tangent space to each point of H? in
the usual way with C, find the parallel vector field X (t) € C = Tc(,f)]l-]l2 along ¢, which is determined
by its value at t = 0:

X(0)=1€C=TH.

Solution: This question follows the same lines as the Exercise 8.1(a), so we move a bit faster.
Let

dy
be a parallel vector field along the curve c¢. Now ¢/(t) = 6%7 so the parallel condition becomes
0 0 0 0]
"(t)— Vo_—|+b@#)=—+bt)(Vae-—)=0
)5 +alt) (Vg ) 4805 +000) (Va5 )

In Exercise 7.2 we computed the Christoffel symbols for the hyperbolic plane, so we know that

10 9 -190
= Vo —

yoy %0y y Oz

Furthermore, the y-coordinate is fixed along ¢ by y = 1. Thus, the parallel condition is equivalent to the
following system of ODEs:

a'(t) —b(t) =0, V(t)+a(t) =0,
which has solution
a(t) = Acost + Bsint, b(t) = —Asint+ Bcost
for arbitrary constants A, B. Now we know that X(0) = %, so we can find the constants A = 1,B = 0.
Thus,

0 3}
X(t)= cost% - smta—y



8.3. Let (M, g) be a Riemannian manifold and ¢ : [a,b] — M be a smooth curve. Let £ denote the
corresponding covariant derivative along the curve c. Let X, Y be any two parallel vector fields X, Y

along c. Show that

d
—(X,Y)=0
dt<’> ’

L.e., the parallel transport P : T,y M — T,;)M is a linear isometry.

(a) (%) Prove this statement in the particular case when the vector fields X,Y" along ¢ have global
extensions X,Y : M — TM.

(b) Do the same computation for a general case writing X (¢), Y (¢) in local coordinates.

Solution:

(a) Assume first that there are global vector fields X, Y : M — TM with X (c(t)) = X (t) and Y (¢(t)) = Y (t)
for all ¢ € [a,b]. Since the Levi-Civita connection is Riemannian, we conclude that

% (XY) = %L ((X,f@ oc) = (1) (<X,f/>)

= (VoK. Y (1) + (X(), Van¥) = (DX, (0) + (X (1), Dy (0) =0

since the vector fields X,Y are parallel along ¢. But this implies that ¢ — (X (¢),Y(t)) is a constant
function, i.e. the parallel transport P : T,.(qyM — T,y M is an isometry, since

(PeX(a), P.Y (a)) = (X(b), Y (b)) = (X(a),Y(a)).

(b) Now we assume that X,Y do not have global extensions. Assume that there is a coordinate chart
o:(x1,...,2,) : U=V with ¢([a,b]) C U. Then we can write

X0=2 0 (t)aij e(t)’ Y(t) =2 b, (t);;j

e(t)’

d d o 0
XYy =2 (z;ajbk (<axj’axk> oc>) :

and we have

)

As before, the Riemannian property of the Levi-Civita connection yields

d o 0 o 0
at (<6a:j’ 8Tck> OC) = <Vc’(t)£j, zn

This implies that

0 0
' ﬁj‘cu)’ Vc/(t)ﬁix;)'

d Y b+ a2, _ 9 9 0 2
= <X, Y> _ > (ajbk + aﬂbk)<8mj’ 8xk> oc—+ a]bk <<Vc/(t) 81‘]" 8l‘k o(t) 8.Tj c(t)7 Vc/(t) 8$k;>)
P 9 9
. reny Y . AR pu— a
= Ej aj(t) 8z, le) + a;(t)Ver ) ox;’ Xk:bk(t) oy, c(t)>+
9 0

=(C a5

D 0 D 0 D D
= <Za <aj8xjoc> ,Y>+<X5;% (akal'koc> = <%X7Y>+<X7@Y> =0.

J

b/ ti b t / —_ =
c(t)7zk: il )8ﬂck e(t) + bkt Ve () 8xk>



Finally, if we need k coordinate charts Uy, ..., Uy to cover ¢([a,b]), i.e., if we have

k

c([a,b]) C U U;

j=1

with a partition a < t; < ty--+ < tg_1 < bsuch that c(a),c(t1) € U, c(t1),c(tzs) € Ua, ..., c(tg—1),c(b) €
Uy, we conclude with the previous argument that % (X,Y) is constant on the segments [a, t1], [t1, 2], . . ., [tk—1,0],
and therefore, constant on all [a, b].

8.4. Given a curve c : [a,b] — R3, c(t) = (f(t),0,g(t)) without self-intersections and with f(t) > 0 for
all t € [a,b], let M C R3 denote the surface of revolution obtained by rotating this curve around the
z-axis. Let V denote the Levi-Civita connection of M. An almost global coordinate chart is given

by ¢: U — V :=(a,b) x (0,27),

o~ (21, 22) = (f(21) cos ma, f(a1) sinws, g(x1)).

a) Calculate the Christoffel symbols of this coordinate chart and express V o -2- in terms of the
ox;
oz,

: o)
basis I

(b) Let v1(t) = ¢~ *(z1 +t,z2). Calculate
D,
dt’y:l,
where % denotes the covariant derivative along ;. Show that this vector field along ~; vanishes
if and only if the generating curve ¢ of M is parametrized proportionally to arc-length. Note
that ~; is obtained by rotation of ¢ by a fixed angle. Derive from these facts that meridians of
a surface of revolution are geodesics if they are parametrized proportionally to arc length.
(c) Let vo(t) = ¢~ (1,72 + t). Calculate
D /
dt727
where % denotes the covariant derivative along ~2. Show that this vector field along 2 vanishes
if and only if f/(x1) = 0. Explain that this implies that parallels of a surface of revolution are
geodesics if they have locally maximal or minimal radius.

Solution:

(a) We have
0 / / . /
87:61|Lp—1($1’$2) (f'(z1) cosza, f'(21) sinwa, g'(21)),
0

87x2|%0*1(901@2) (—f(z1)sinzo, f(21) cos xo,0).

This implies that

() = ((f’(xl))2 g (g (21))? f2(0x1)> _ (IIC’(J(S)l)II2 f2(x1))

and

1
i\ _ [ T@Erreeye 9
(9") 0 I R
f2(z1)



Consequently, we have

g = 2(f'(x)f" (1) + g (z1)g" (1)),
g221 = 2f(2z1)f'(%1),

and the Christoffel symbols are calculated as

1 f'(@) " (x1) + g'(x1)g" (1)
L. = L 1 4 _ _ ’
11 29 (911,1 gi1,1 91171) (f/(l'l))Q + (g/(xl))g
1
ry = 5922(912,1 + 9121 — g11,2) = 0,
1
Iy, = 5911(911,2 + 9121 — g121) =0 = I,
1 f'(z1)
1—\2 — 22 o _ — 1‘\2
12 29 (912,2 + 9221 — 912,2) fien) 215
1 —f(z1)f' (1)
L — 1 n _ _ 7
22 29 (921,2 921,2 922,1) (f/(xl))Q ¥ (g'(IE1))2
1
r3, = 5922(922,2 + 9222 — ga2,2) = 0.

This implies that

v, 9 _ fe)ffe)+d(@)e"(z) 9
31 Oy (f'(@1))? + (¢'(z1))>  Oxa’
v, 2 _ [l o
921 Oxg f(z1) Oxs’
0 flm) O
75 0r,  f(w1) Oxy
v, 2 _ —fl@)f(z1) O
772 O (f"(21))? + (¢'(21))? Oy
(b) Note that we have
, 9]
1) =75 -l

This implies that

Do\ = 0 (v, 2 _
(31) 0 =050 = (Voo 5 ) (om0 =

_ S+ )@ +t) + g/ (1 + )" (21 + 1) i| cT M
a (f'(@1+1))? + (¢ (z1 +1))? dary 11D = IO

The condition £+] = 0 is equivalent to f'(t)f"(t) + ¢'(t)g”(t) = 0 for all ¢ € (a,b), which in its turn is
equivalent to (f(t))? + (¢'(t))? = const. Since

I @I = (f'(£)* + (g' (1)),

we conclude that %’yi vanishes identically if and only if ¢ is parametrized proportionally to arc length.

Since ¢ and 7; are obtained from each other by an isometry of R3, namely a rotation by the angle
2o around the z-axis, ¢ is parametrized proportionally to arc length if and only if v, is parametrized
proportionally to arc length.

(c) We have
0
Ya(t) = 8762|w2(t)-



This implies that

D, _ 0 9 _ fl)f(@) 9
(%) 0= Vtre; = (Yot iy ) 0200 = Gt Gty s € P

Since f > 0, the condition %’yé = 0 is equivalent to f’(z1) = 0, which holds, in particular, if f has a
local maximum or minimum at x;. Now observe that 5 is a parallel of the surface of revolution M,
and f(x1) is its radius (i.e., the distance to the z-axis).




