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9.1. First Variation Formula of energy.
Let F : (−ε, ε) × [a, b] → M be a variation of a smooth curve c : [a, b] → M with c′(t) 6= 0 for
all t ∈ [a, b], and let X be its variational vector field. Let E : (−ε, ε) → R+ denote the associated
energy, i.e.,

E(s) =
1

2

∫ b

a
‖∂F
∂t

(s, t)‖2dt.

(a) Show that

E′(0) = 〈X(b), c′(b)〉 − 〈X(a), c′(a)〉 −
∫ b

a
〈X(t),

D

dt
c′(t)〉dt.

Simplify the formula for the cases when

(b) c is a geodesic,

(c) F is a proper variation,

(d) c is a geodesic and F is a proper variation.

Let c : [a, b]→M be a curve connecting p and q (not necessarily parametrized proportional to
arc length). Show that

(e) E′(0) = 0 for every proper variation implies that c is a geodesic.

(f) Assume that c minimizes the energy amongst all curves γ : [a, b]→M which connect p and q.
Then c is a geodesic.

Solution:

(a) We have

E′(0) =
d

ds

∣∣∣
s=0

1

2

∫ b

a

‖∂F
∂t

(s, t)‖2dt =
1

2

∫ b

a

∂

∂s

∣∣∣
s=0
〈∂F
∂t

(s, t),
∂F

∂t
(s, t)〉dt =

∫ b

a

〈D
ds

∂F

∂t
(0, t), c′(t)〉dt.

Applying the Symmetry Lemma yields

E′(0) =

∫ b

a

〈D
dt

∂F

∂s
(0, t), c′(t)〉dt =

∫ b

a

d

dt
〈X(t), c′(t)〉 − 〈X(t),

D

dt
c′(t)〉dt =

= 〈X(b), c′(b)〉 − 〈X(a), c′(a)〉 −
∫ b

a

〈X(t),
D

dt
c′(t)〉dt.

(b) If c is a geodesic, this simplifies to E′(0) = 〈X(b), c′(b)〉 − 〈X(a), c′(a)〉.

(c) If F is a proper variation, this simplifies to E′(0) = −
∫ b

a
〈X(t), Ddtc

′(t)〉dt.
(d) If c is a geodesic and F is a proper variation, this simplifies to E′(0) = 0.



(e) Assume that c is not a geodesic. Then there exists a t0 ∈ (a, b) with D
dtc
′(t0) 6= 0 (since the map

t 7→ D
dtc
′(t0) is continuous). Choose a smooth function ϕ : [a, b] → R≥0 with ϕ(a) = ϕ(b) = 0 and

ϕ(t0) = 1 and set X(t) = ϕ(t)D
dtc
′(t). Then X is the variational vector field of some proper variation

F , and we obtain for its energy functional

E′(0) = −
∫ b

a

〈X(t),
D

dt
c′(t)〉dt = −

∫ b

a

ϕ(t)‖D
dt
c′(t)‖dt < 0.

Therefore,
c is not geodesic ⇒ E′(0) 6= 0 for some proper variation.

(f) Now assume that c minimizes energy amongst all curves γ : [a, b]→M connecting p and q. Let F be a
proper variation. Then the curves t 7→ F (s, t) are also curves [a, b]→M connecting p, q, so their energy
is ≥ E(0) = E(c). This implies that E′(0) = 0. Using (e), we conclude that c is a geodesic.

9.2. Rescaling Lemma.
Let c : [0, a]→M be a geodesic, and k > 0. Define a curve γ by

γ : [0, a/k]→M, γ(t) = c(kt)

Show that γ is geodesic with γ′(t) = kc′(kt).

Solution: Proof is sraightforward: all the entries of the corresponding differential equation for c(t) are multi-

plied by k2.

9.3. Let M be a smooth manifold, let X(M) be the vector space of smooth vector fields on M , and ∇
be a general affine connection (we do not require a Riemannian metric on M and the ”Riemannian
property”, neither the ”torsion-free property” of the Levi-Civita connection). We say a map

A : X(M)× · · · × X(M)→ C∞(M) or X(M)

is a tensor if it is linear in each argument, i.e.,

A(X1, · · · , fXi + gYi, · · · , Xr) = fA(X1, · · · , Xi, · · · , Xr) + gA(X1, · · · , Yi, · · · , Xr),

for all X,Y ∈ X(M) and f, g ∈ C∞(M).

(a) Show that

T : X(M)× X(M)→ X(M), T (X,Y ) = [X,Y ]− (∇XY −∇YX)

is a tensor (called the torsion of the manifold M).

(b) Let
A : X(M)× · · · × X(M)︸ ︷︷ ︸

r factors

→ C∞(M)

be a tensor. The covariant derivative of A is a map

∇A : X(M)× · · · × X(M)︸ ︷︷ ︸
r+1 factors

→ C∞(M),

defined by

∇A(X1, . . . , Xr, Y ) = Y (A(X1, . . . , Xr))−
r∑

j=1

A(X1, . . . ,∇YXj , . . . , Xr).

Show that ∇A is a tensor.



(c) Let (M, g) be a Riemannian manifold and G : X(M) × X(M) → C∞(M) be the Riemannian
tensor, i.e., G(X,Y ) = 〈X,Y 〉. Calculate ∇G. What does it mean that ∇G ≡ 0?

Solution:

(a) Note that T (X,Y ) = −T (Y,X), so we only have to prove linearity in the first argument. Moreover, we
obviously have T (X1 +X2, Y ) = T (X1, Y ) + T (X2, Y ). We are left to show that

T (fX, Y ) = fT (X,Y ).

The calculation for this goes as follows:

T (fX, Y ) = [fX, Y ]− (∇fXY −∇Y fX) = f [X,Y ]− (Y f)X − (f∇XY − (Y f)X − f∇YX) =

= f([X,Y ]− (∇XY −∇YX))− (Y f)X + (Y f)X = fT (X,Y ).

(b) It is, again, straightforward to check that

∇A(X1, . . . , Xi + X̃i, . . . , Xr, Xr+1) = ∇A(X1, . . . , Xi, . . . , Xr, Xr+1) +∇A(X1, . . . , X̃i, . . . , Xr, Xr+1)

for i = 1, 2, . . . , r + 1. So it remains to show that

∇A(X1, . . . , fXi, . . . , Xr, Xr+1) = f∇A(X1, . . . , Xi, . . . , Xr, Xr+1),

for i = 1, 2, . . . , r + 1. Let i = 1, 2, . . . , r. Then

∇A(X1, . . . , fXi, . . . , Xr, Y ) =

= Y (fA(X1, . . . , Xr))− f
n∑

j=1

A(X1, . . . ,∇YXj , . . . , Xr)− (Y f)A(X1, . . . , Xr) =

= fY (A(X1, . . . , Xr))− f
n∑

j=1

A(X1, . . . ,∇YXj , . . . , Xr) = f∇A(X1, . . . , Xr, Y ).

Finally, we obtain

∇A(X1, . . . , Xr, fY ) = fY (A(X1, . . . , X2))−
∑

A(X1, . . . , f∇YXj , . . . , Xr) =

= f∇A(X1, . . . , Xr, Y ).

(c) Using (b), we obtain
∇G(X,Y, Z) = Z(〈X,Y 〉)− 〈∇ZX,Y 〉 − 〈X,∇ZY 〉.

Then ∇G ≡ 0 means precisely that the affine connection ∇ has the ”Riemannian property”.


