Riemannian Geometry IV, Solutions 9 (Week 9)

9.1. First Variation Formula of energy.

Let $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be a variation of a smooth curve $c:[a, b] \rightarrow M$ with $c^{\prime}(t) \neq 0$ for all $t \in[a, b]$, and let X be its variational vector field. Let $E:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}_{+}$denote the associated energy, i.e.,

$$
E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t
$$

(a) Show that

$$
E^{\prime}(0)=\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t
$$

Simplify the formula for the cases when
(b) c is a geodesic,
(c) F is a proper variation,
(d) c is a geodesic and F is a proper variation.

Let $c:[a, b] \rightarrow M$ be a curve connecting p and q (not necessarily parametrized proportional to arc length). Show that
(e) $E^{\prime}(0)=0$ for every proper variation implies that c is a geodesic.
(f) Assume that c minimizes the energy amongst all curves $\gamma:[a, b] \rightarrow M$ which connect p and q. Then c is a geodesic.

Solution:

(a) We have

$$
E^{\prime}(0)=\left.\frac{d}{d s}\right|_{s=0} \frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t=\left.\frac{1}{2} \int_{a}^{b} \frac{\partial}{\partial s}\right|_{s=0}\left\langle\frac{\partial F}{\partial t}(s, t), \frac{\partial F}{\partial t}(s, t)\right\rangle d t=\int_{a}^{b}\left\langle\frac{D}{d s} \frac{\partial F}{\partial t}(0, t), c^{\prime}(t)\right\rangle d t
$$

Applying the Symmetry Lemma yields

$$
\begin{aligned}
& E^{\prime}(0)=\int_{a}^{b}\left\langle\frac{D}{d t} \frac{\partial F}{\partial s}(0, t), c^{\prime}(t)\right\rangle d t=\int_{a}^{b} \frac{d}{d t}\left\langle X(t), c^{\prime}(t)\right\rangle-\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t= \\
&=\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t
\end{aligned}
$$

(b) If c is a geodesic, this simplifies to $E^{\prime}(0)=\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle$.
(c) If F is a proper variation, this simplifies to $E^{\prime}(0)=-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t$.
(d) If c is a geodesic and F is a proper variation, this simplifies to $E^{\prime}(0)=0$.
(e) Assume that c is not a geodesic. Then there exists a $t_{0} \in(a, b)$ with $\frac{D}{d t} c^{\prime}\left(t_{0}\right) \neq 0$ (since the map $t \mapsto \frac{D}{d t} c^{\prime}\left(t_{0}\right)$ is continuous). Choose a smooth function $\varphi:[a, b] \rightarrow \mathbb{R}_{\geq 0}$ with $\varphi(a)=\varphi(b)=0$ and $\varphi\left(t_{0}\right)=1$ and set $X(t)=\varphi(t) \frac{D}{d t} c^{\prime}(t)$. Then X is the variational vector field of some proper variation F, and we obtain for its energy functional

$$
E^{\prime}(0)=-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t=-\int_{a}^{b} \varphi(t)\left\|\frac{D}{d t} c^{\prime}(t)\right\| d t<0 .
$$

Therefore,

$$
c \text { is not geodesic } \Rightarrow E^{\prime}(0) \neq 0 \text { for some proper variation. }
$$

(f) Now assume that c minimizes energy amongst all curves $\gamma:[a, b] \rightarrow M$ connecting p and q. Let F be a proper variation. Then the curves $t \mapsto F(s, t)$ are also curves $[a, b] \rightarrow M$ connecting p, q, so their energy is $\geq E(0)=E(c)$. This implies that $E^{\prime}(0)=0$. Using (e), we conclude that c is a geodesic.

9.2. Rescaling Lemma.

Let $c:[0, a] \rightarrow M$ be a geodesic, and $k>0$. Define a curve γ by

$$
\gamma:[0, a / k] \rightarrow M, \quad \gamma(t)=c(k t)
$$

Show that γ is geodesic with $\gamma^{\prime}(t)=k c^{\prime}(k t)$.
Solution: Proof is sraightforward: all the entries of the corresponding differential equation for $c(t)$ are multiplied by k^{2}.
9.3. Let M be a smooth manifold, let $\mathfrak{X}(M)$ be the vector space of smooth vector fields on M, and ∇ be a general affine connection (we do not require a Riemannian metric on M and the "Riemannian property", neither the "torsion-free property" of the Levi-Civita connection). We say a map

$$
A: \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \rightarrow C^{\infty}(M) \text { or } \mathfrak{X}(M)
$$

is a tensor if it is linear in each argument, i.e.,

$$
A\left(X_{1}, \cdots, f X_{i}+g Y_{i}, \cdots, X_{r}\right)=f A\left(X_{1}, \cdots, X_{i}, \cdots, X_{r}\right)+g A\left(X_{1}, \cdots, Y_{i}, \cdots, X_{r}\right)
$$

for all $X, Y \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$.
(a) Show that

$$
T: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M), \quad T(X, Y)=[X, Y]-\left(\nabla_{X} Y-\nabla_{Y} X\right)
$$

is a tensor (called the torsion of the manifold M).
(b) Let

$$
A: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{r \text { factors }} \rightarrow C^{\infty}(M)
$$

be a tensor. The covariant derivative of A is a map

$$
\nabla A: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{r+1 \text { factors }} \rightarrow C^{\infty}(M)
$$

defined by

$$
\nabla A\left(X_{1}, \ldots, X_{r}, Y\right)=Y\left(A\left(X_{1}, \ldots, X_{r}\right)\right)-\sum_{j=1}^{r} A\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right)
$$

Show that ∇A is a tensor.
(c) Let (M, g) be a Riemannian manifold and $G: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow C^{\infty}(M)$ be the Riemannian tensor, i.e., $G(X, Y)=\langle X, Y\rangle$. Calculate ∇G. What does it mean that $\nabla G \equiv 0$?

Solution:

(a) Note that $T(X, Y)=-T(Y, X)$, so we only have to prove linearity in the first argument. Moreover, we obviously have $T\left(X_{1}+X_{2}, Y\right)=T\left(X_{1}, Y\right)+T\left(X_{2}, Y\right)$. We are left to show that

$$
T(f X, Y)=f T(X, Y)
$$

The calculation for this goes as follows:

$$
\begin{array}{r}
T(f X, Y)=[f X, Y]-\left(\nabla_{f X} Y-\nabla_{Y} f X\right)=f[X, Y]-(Y f) X-\left(f \nabla_{X} Y-(Y f) X-f \nabla_{Y} X\right)= \\
=f\left([X, Y]-\left(\nabla_{X} Y-\nabla_{Y} X\right)\right)-(Y f) X+(Y f) X=f T(X, Y)
\end{array}
$$

(b) It is, again, straightforward to check that

$$
\nabla A\left(X_{1}, \ldots, X_{i}+\tilde{X}_{i}, \ldots, X_{r}, X_{r+1}\right)=\nabla A\left(X_{1}, \ldots, X_{i}, \ldots, X_{r}, X_{r+1}\right)+\nabla A\left(X_{1}, \ldots, \tilde{X}_{i}, \ldots, X_{r}, X_{r+1}\right)
$$

for $i=1,2, \ldots, r+1$. So it remains to show that

$$
\nabla A\left(X_{1}, \ldots, f X_{i}, \ldots, X_{r}, X_{r+1}\right)=f \nabla A\left(X_{1}, \ldots, X_{i}, \ldots, X_{r}, X_{r+1}\right)
$$

for $i=1,2, \ldots, r+1$. Let $i=1,2, \ldots, r$. Then

$$
\begin{aligned}
& \nabla A\left(X_{1}, \ldots, f X_{i}, \ldots, X_{r}, Y\right)= \\
& \qquad \begin{array}{l}
=Y\left(f A\left(X_{1}, \ldots, X_{r}\right)\right)-f \sum_{j=1}^{n} A\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right)-(Y f) A\left(X_{1}, \ldots, X_{r}\right)= \\
\quad=f Y\left(A\left(X_{1}, \ldots, X_{r}\right)\right)-f \sum_{j=1}^{n} A\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right)=f \nabla A\left(X_{1}, \ldots, X_{r}, Y\right) .
\end{array}
\end{aligned}
$$

Finally, we obtain

$$
\begin{aligned}
\nabla A\left(X_{1}, \ldots, X_{r}, f Y\right)=f Y\left(A\left(X_{1}, \ldots, X_{2}\right)\right)-\sum A\left(X_{1}, \ldots, f \nabla_{Y} X_{j}, \ldots, X_{r}\right) & = \\
& =f \nabla A\left(X_{1}, \ldots, X_{r}, Y\right) .
\end{aligned}
$$

(c) Using (b), we obtain

$$
\nabla G(X, Y, Z)=Z(\langle X, Y\rangle)-\left\langle\nabla_{Z} X, Y\right\rangle-\left\langle X, \nabla_{Z} Y\right\rangle
$$

Then $\nabla G \equiv 0$ means precisely that the affine connection ∇ has the "Riemannian property".

