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Riemannian Geometry IV, Term 1 (Section 2 )

2 Tangent space

Definition 2.1. Let f : M™ — N™ be a map of smooth manifolds with atlases (U;, p;(U;), ¢i)ier and
(W, %;(W;),v4)jes. The map f is smooth if it induces smooth maps between open sets in R™ and R",
. . ) 1 . . .
ie. if ;o fop; o (Ui f -1 (W N (U2))) 13 smooth for alli € I, j € J.

If f is a bijection and both f and f~! are smooth then f is called a diffeomorphism.

Definition 2.2. A derivation on the set C°°(M, p) of all smooth functions on M defined in a neighborhood
of p is a linear map § : C*°(M,p) — R, s.t. for all f,g € C°(M,p) holds (f-g) = f(p)d(g)+(f)g(p)
(the Leibniz rule).

The set of all derivations is denoted by D> (M, p). This is a real vector space (exercise).

Definition 2.3. The space D*°(M, p) is called the tangent space of M at p, denoted T, M. Derivations
are tangent vectors.

Definition 2.4. Let 7 : (a,b) — M be a smooth curve in M, ty € (a,b), v(t9) = p and f € C>°(M,p).
Define the directional derivative +/(to)(f) € R of f at p along v by

V(to)(f) = tim 10T D ZFOW)) _ iy = 4| (r0n)

s—0 S dt t=to

Directional derivatives are derivations (exercise).
Remark. Two curves v; and 5 through p may define the same directional derivative.

Notation. Let M™ be a manifold, ¢ : U -V C R"™ a chart at p € U C M. For i = 1,...,n define the
curves ;(t) = ¢ 1 (p(p) + e;t) for small t > 0 (here {e;} is a basis of R?).

Definition 2.5. Define %!p = 7/(0), i.e.
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where % on the right is just a classical partial derivative.

By definition, we have
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{6301’ ce 8:(:,1} C {Directional derivatives} C D*°(M,p)

Lemma 2.6. Let vy : (—e,e) — M be a smooth curve, p = v(0). Let ¢ : U C M — R™ be a chart with

coordinate functions x;. Then ~v'(0) is a linear combination of {%}P}K o
H <i<n



Corollary 2.7.
0 0
Directional derivati Cle—,....,=—) CD>®(M,p).
{Directional derivatives} C <8:c1’ , &rn) C (M, p)
Lemma 2.8. Let ¢ : U C M — R" be a chart, p(p) = 0. Let 3(t) = (3 ;_, kie;)t : R — R" be a line,
where {e1,...,e,} is a basis, k; € R. Define y(t) = ¢t o¥(t) € M. Then v'(0) = > 1, kla%l

Corollary 2.9.
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{Directional derivatives} = <a—$1, e 8—%) C D*(M,p).
Proposition 2.10.
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irectional derivatives} = (—,...,—) = .
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Remark. If an n-manifold M is embedded into R, then every tangent vector at p € M can be identified
with vector (v1(0),...,vx(0)) € RY, where v : (—¢,) — M is some smooth curve with v(0) = p.

Example 2.11. For the group SL,(R) = {A € M, | det A = 1}, the tangent space at I is the set of all
trace-free matrices: T7(SL,(R)) = {X € M,(R) | tr X = 0}.

Remark. Since partial derivatives are linearly independent (exercise), the dimension of a tangent space
is equal to the dimension of a manifold.

Proposition 2.12. (Change of basis for T,M). Let M™ be a smooth manifold, ¢o : Uy — Vo a
6

chart, (x¥,...,x%) the coordinates in V,. Let p € Uy NUg. Then % = Z?Zlg%%, where
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Definition 2.13. Let M, N be smooth manifolds, let f : M — N be a smooth map. Define a linear map

Df(p) : Ty,M — TN called the differential of f at p by Df(p)y'(0) = (f 0~)'(0) for a smooth curve
v € M with v(0) = p.

Remark. Df(p) is well defined.

Remark. Df(p) is linear.

Lemma 2.14. (a) If ¢ is a chart, then Do(p) : TyM — T, \R" is the identity map taking % to 8?:-
K3 p 3

(b) For M % N % L we have D(g o £)(p) = Dg(f(p)) o Df(p).

Example 2.15. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.16. Let M be a smooth manifold. A disjoint union T'M = UpeprT, M of tangent spaces to
each p € M is called a tangent bundle.
There is a canonical projection II : TM — M, II(v) = p for every v € T,M.

Proposition 2.17. The tangent bundle TM has a structure of 2n-dimensional smooth manifold, s.t.
II:TM — M is a smooth map.



Definition 2.18. A vector field X on a smooth manifold M is a smooth map X : M — T'M such that
Vpe M X(p) € T,M
The set of all vector fields on M is denoted by X(M).

Remark 2.19. (a) X(M) has a structure of a vector space.
(b) Vector fields can be multiplied by smooth functions.
(c) Taking a coordinate chart (U, ¢ = (z1,...,2,)), any vector field X can be written in U as X (p) =
S fi (p)a%z € T,M, where {f;} are some smooth functions on U.
Examples 2.20-2.21. Vector fields on R? and 2-sphere.

Remark 2.22. Observe that for X € X(M) we have X(p) € T,M, i.e. X(p) is a directional derivative
at p € M. Thus, we can use the vector field to differentiate a function f € C*°(M) by (X f)(p) = X(p)f,
so that we get another smooth function X f € C°°(M).

Proposition 2.23. Let X,Y € X(M). Then there exists a unique vector field Z € X(M) such that
Z(f) = X(Y(f)) = Y(X(f)) for all f € C=(M).
This vector field Z = XY — Y X is denoted by [X,Y] and called the Lie bracket of X and Y.

Proposition 2.24. Properties of Lie bracket:
(a) [X,Y]=—[Y, X];
(b) [aX +bY, Z] = a[X, Z] + b[Y, Z] for a,b € R;
(c) [[X,Y],Z] + ][V, Z), X] + [[Z. X],Y] = 0 (Jacobi identity);
(@) [fX,gY]= fg[X, Y]+ f(Xg)Y —g(Y )X for f,g € C=(M).

Definition 2.25. A Lie algebra is a vector space g with a binary operation [-,:] : g X g — g called the
Lie bracket which satisfies first three properties from Proposition 2.24.

Proposition 2.24 implies that X(M) is a Lie algebra.

Theorem 2.26 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an
even-dimensional sphere S*™.

Corollary. Let f : S?™ — S be a continuous map, and suppose that for any p € S*™ we have
f(p) # —p. Then f has a fixed point, i.e. there exists ¢ € S?™ s.t. f(q) = q.



