Topics in Combinatorics IV, Homework 1 (Week 1)

Due date for starred problems: Friday, October 21, 6pm.
1.1. Compute the number of Dyck paths of length $2 n$ which start with two steps up.
1.2. (\star)
(a) Let P be a Dyck path of length $2 n$, let a_{1}, \ldots, a_{n} be the positions of the steps "down", $1 \leq a_{i} \leq 2 n$. Show that $a_{i} \geq 2 i$ for every $i \leq n$.
(b) Show that the number of strictly increasing sequences $\left(a_{1}, \ldots, a_{n}\right)$ of integers satisfying $2 i \leq a_{i} \leq 2 n$ is the n-th Catalan number C_{n}.
(c) Show that the number of strictly increasing sequences $\left(a_{1}, \ldots, a_{n-1}\right)$ of integers satisfying $1 \leq a_{i} \leq 2 i$ is the n-th Catalan number C_{n}.
1.3. (\star) Show explicitly that the number of triangulations of an $(n+2)$-gon satisfies the Catalan recursion (see Lemma 1.10 from lectures).
1.4. Find a bijection between ballot sequences of length $2 n$ and bracketings of $n+1$ variables. Hint: assign to every +1 in the sequence an opening bracket.
1.5. Given a ballot sequence $\varepsilon_{1}, \ldots, \varepsilon_{2 n}$, one can write a sequence of differences $a_{i}=\varepsilon_{i+1}-\varepsilon_{i}$, $1 \leq i \leq 2 n-1$. Characterize all such sequences (and thus, get another definition of Catalan numbers).

