Topics in Combinatorics IV, Homework 2 (Week 2)

Due date for starred problems: Friday, October 21, 6pm.
2.1. Let n be a positive integer, and let p be a prime.
(a) Show that the number of sequences of integers n_{1}, \ldots, n_{p}, where $1 \leq n_{i} \leq n$ and at least two n_{i} 's are distinct, is equal to $n^{p}-n$.
(b) Show that all cyclic shifts of any sequence from (a) are distinct.
(c) Deduce that $n^{p}-n$ is divisible by p.
2.2. (\star) Consider a Drunkard's walk in the segment $[0, n]$, i.e.:

- the walk starts at interger $x=i, 0 \leq i \leq n$;
- the probability of steps left and right is equal to $1 / 2$;
- the walk ends when the drunkard reaches either $x=0$ or $x=n$.

Denote by p_{i} the probability the walk starting at $x=i$ ends at point $x=n$.
(a) Show that $p_{i}=\frac{1}{2} p_{i-1}+\frac{1}{2} p_{i+1}$ for every $i=1, \ldots, n-1$.
(b) Compute p_{i} for every i.

Hint: you may need to recall some linear algebra.
(c) Deduce from (b) the result of Example 1.15 (Drunkard's walk) from lectures.
2.3. Find a bijection between the set of non-decreasing sequences $1 \leq a_{1} \leq \cdots \leq a_{n}$ such that $a_{i} \leq i$ and lattice paths in the $n \times n$ square from $(n, 0)$ to $(0, n)$ lying above the main diagonal (and thus, show that the number of such sequences is C_{n}).
2.4. (\star) We say that a Dyck path has a hill at point $2 i+1$ if it passes through points $(2 i, 0)$ and $(2 i+2,0)$. Denote by F_{k} the number of hill-free Dyck paths of length $2 k$, i.e. Dyck paths without hills.
(a) Compute F_{k} for $k \leq 5$.
(b) Show that numbers F_{k} satisfy the following equation:

$$
C_{n}=F_{n}+\sum_{k=0}^{n-1} F_{k} C_{n-k-1},
$$

where C_{k} are Catalan numbers.
Hint: consider the first hill from the left.
(c) Compute the generating function $F(x)$ of the sequence $\left(F_{k}\right)$. Show that

$$
F(x)=\frac{1}{1-x^{2} C(x)^{2}},
$$

where $C(x)$ is the generating function for Catalan numbers.

