Topics in Combinatorics IV, Homework 5 (Week 5)

Due date for starred problems: Friday, November 18, 6pm.

5.1. Let c_{n} denote the number of c-objects on n labeled nodes (as in the lectures), $n \geq 1$. Denote by $d_{n, k}$ the number of d-objects on n nodes with k components, i.e. the number of collections of $k c$-objects with total number of nodes being n (e.g., $d_{n, 1}=c_{n}$, and $\sum_{k} d_{n, k}=d_{n}$). Define

$$
d(x, y)=\sum_{n \geq 0} \sum_{k \geq 0} d_{n, k} \frac{x^{n}}{n!} y^{k}
$$

Show that $d(x, y)=e^{y \cdot c(x)}$, where $c(x)$ is the exponential generating function of $\left(c_{n}\right)$.
5.2. Recall that Stirling number of second kind $S(n, k)$ is defined as the number of set partitions of $[n]$ into k blocks.
(a) Show that $\sum_{n, k \geq 0} S(n, k) \frac{x^{n}}{n!} y^{k}=e^{y\left(e^{x}-1\right)}$.
(b) Prove the following recurrence relation:

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

5.3. (\star) Define the falling factorial $y_{(k)}=y(y-1) \ldots(y-k+1)=k!\binom{y}{k}$ for any $y \in \mathbb{R}$.
(a) Show that the number of surjective functions $f:[n] \rightarrow[k]$ is equal to $S(n, k) \cdot k!$.
(b) Show that for any $m, n \in \mathbb{N}$

$$
\sum_{k=0}^{n}\binom{m}{k} S(n, k) \cdot k!=m^{n}
$$

(c) Show that

$$
\sum_{k=0}^{n} S(n, k) y_{(k)}=y^{n}
$$

5.4. Define the signless Stirling number of the first kind $c(n, k)$ as the number of permutations $w \in S_{n}$ with cyc $(w)=k$, and Stirling number of the first kind as $s(n, k)=(-1)^{n-k} c(n, k)$. We define $c(0,0)=1$ and $c(n, 0)=c(0, n)=0$ for $n>0$.
(a) Show that $c(n, k)=c(n-1, k-1)+(n-1) c(n-1, k)$.
(b) Define the raising factorial $y^{(k)}=y(y+1) \ldots(y+k-1)=k!\left({ }_{k}^{y+k-1}\right)$ for any $y \in \mathbb{R}$. Show that

$$
\sum_{k=0}^{n} c(n, k) x^{k}=x^{(n)}
$$

(c) Show that

$$
\sum_{k=0}^{n} s(n, k) x^{k}=x_{(n)}
$$

