Topics in Combinatorics IV, Homework 6 (Week 6)

Due date for starred problems: Friday, November 18, 6pm.

6.1. Recall that given $w = w_1 w_2 \dots w_n \in S_n$, inv (w) is the number of inversions (i.e. pairs i < j such that $w_i > w_j$), des (w) is the number of descents (i.e. places $i \in [n-1]$ such that $w_i > w_{i+1}$), and maj (w) is the sum of all $i \in [n-1]$ such that i is a descent of w. Show that two statistics maj and inv are equidistributed.

Hint: use induction.

6.2. Recall that given $w \in S_n$, exc (w) is the number of excedances of w (i.e. places $i \in [n]$ such that $i < w_i$).

Complete the proof of Theorem 3.13: show that statistics des and exc are equidistributed.

6.3. Let $w = w_1 w_2 \dots w_n \in S_n$, $n \ge 2$. $i \in [n]$ is a weak excedance of w if $w_i \ge i$. Denote by wexc (w) the number of weak excedances of $w \in S_n$.

Show that statistics exc and wexc -1 are equidistributed.

6.4. (*) Define Eulerian numbers A(n, k) as the numbers of permutations $w \in S_n$ with des $(w) = k - 1, k \le n$.

Show that A(n, k+1) = (n-k)A(n-1, k) + (k+1)A(n-1, k+1).