Topics in Combinatorics IV, Homework 8 (Week 8)

Due date for starred problems: Friday, December 2, 6pm.
8.1. Show that the poset $J(P)$ of order ideals of a poset P is a distributive lattice.
8.2. Complete the proof of Lemma 4.30. Given a poset P with $|P|=n$, construct a map from the set of linear extensions of P to the set of saturated chains of $J(P)$ by taking $\varphi: P \rightarrow[n]$ to the chain $\hat{0}=\emptyset<\cdot I_{1}<I_{2}<\cdot \ldots<I_{n}=\hat{1}$, where $I_{j}=\varphi^{-1}([j])$. Show that this map is a bijection.
8.3. (\star) Let $w=26514871093 \in S_{10}$. Apply the RSK algorithm to w to obtain SYT P and Q.
8.4. (\star) Let (P, Q) be SYT of shape $\lambda=(4,2,2,2) \vdash 10$, where

$$
P=
$$

$Q=$| 1 | 2 | 5 | 6 |
| :---: | :---: | :---: | :---: |
| 3 | 4 | | |
| 7 | 8 | | |
| 9 | 10 | | |
| | | | |
| | | | |

Construct $w \in S_{10}$ which is taken to the pair (P, Q) by the RSK algorithm.

