Topics in Combinatorics IV, Homework 9 (Week 9)

9.1. Denote by $r_{x}(P)$ an insertion of x in a partial tableau P in the RSK algorithm. Suppose that during $r_{x}(P)$ the elements x_{1}, \ldots, x_{k} are pushed down from rows $1,2, \ldots, k$ and columns $j_{1}, j_{2}, \ldots, j_{k}$ respectively. Then
(a) $x<x_{1}<\cdots<x_{k}$;
(b) $j_{1} \geq \cdots \geq j_{k}$;
(c) if $P^{\prime}=r_{x}(P)$, then $P_{i, j}^{\prime} \leq P_{i, j}$ for all i, j.
9.2. (a) Show that

$$
\sum_{\lambda \vdash n} f_{\lambda}=\#\left\{w \in S_{n} \mid w^{2}=1\right\}
$$

(b) Show that

$$
\sum_{\lambda \vdash n} f_{\lambda}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} \frac{(2 k)!}{2^{k} k!}
$$

9.3. (A bit of linear algebra) Let A be a real symmetric $n \times n$ matrix with all off-diagonal elements being non-positive. Show that A is positive definite if and only if there exists a vector $v \in \mathbb{R}^{n}$ with all positive coordinates such that all coordinates of $A v$ are also positive.

Hint: use Perron-Frobenius Theorem which states that if all entries of a square matrix are non-negative, then it has a simple positive eigenvalue μ such that μ has maximal modulus amongst all eigenvalues of A, and all the coordinates of the corresponding eigenvector are positive.

