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1 Catalan numbers

1.1 Definitions

Definition 1.1 (one of many). The n-th Catalan number Cn is the number of sequences (ε1, . . . , ε2n)
with εi = ±1 such that

·
2n∑
i=1

εi = 0;

·
k∑
i=1

εi ≥ 0 for every k ≤ 2n.

Remark. Sequences in the definition above are called ballot sequences.

Example 1.2. n = 2: the only sequences of length 2n = 4 are (1, 1,−1,−1) and (1,−1, 1,−1), so C2 = 2.
n = 3: there are five sequences (list them!), so C3 = 5.

Two equivalent definitions of Cn:

· the number of “bracketings” of a non-associative product of n+ 1 variables;

· the number of triangulations of a convex (n+ 2)-gon on a plane (here by a triangulation we mean a
maximal collection of non-crossing diagonals, it automatically subdivides the polygon into triangles).

Example 1.3. For n = 3, there are precisely five bracketings:

((a1a2)a3)a4 (a1(a2a3))a4 (a1a2)(a3a4) a1((a2a3)a4) a1(a2(a3a4)).

There are also precisely five triangulations of a pentagon: two non-crossing diagonals share a vertex, and
there are five vertices to choose from.

Exercise 1.4. Show that the two definitions above are equivalent to Definition 1.1.

Ballot sequences can be represented by Dyck paths: these are paths in a n× n square going along the
grid from one corner (say, (0, n)) to the opposite (i.e., (n, 0)) and staying above the main diagonal. The
bijection with ballot sequences is obvious: εi = 1 becomes a move to the right, and εi = −1 becomes a
move down.

One can draw the top right half of the square only, in this case a Dyck path can be understood as a
path from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1) never going below x-axis. This is the model we
will usually use in the sequel.

Remark. Paths whose all steps are vectors of Zd are called lattice paths. The two models above for Dyck
paths sit in Z2 generated, respectively, by (1, 0), (0,−1), and (1, 1), (1,−1).

1Based on Alex Postnikov’s notes
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Example 1.5.

(a) (b)

Figure 1.1: Dyck paths with steps (a) (1, 0) and (0,−1) and (b) (1, 1) and (1,−1).

1.2 Explicit formula for Cn

Theorem 1.6. Cn =
1

n+ 1

(
2n

n

)
.

Example 1.7. C3 = 1
4

(
6
3

)
= 1

4
6!
3!3! = 6·5·4

4·6 = 5; C4 = 1
5

(
8
4

)
= 1

5
8!
4!4! = 8·7·6·5

5·8·3 = 14; C5 = 1
6

(
10
5

)
= 42.

We will look at three different proofs of the theorem.

Proof 1: by reflection. The number of all lattice paths from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1)
is equal to

(
2n
n

)
– choose n steps “up” out of 2n steps. We will compute the number of ones which go

below the x-axis (call them bad) and subtract.
Observe that a path is bad if and only if it intersects the line y = −1. Find the first point where it

touches the line y = −1, and reflect the part of the path to the right of this point with respect to the
line y = −1. We get a new lattice path, it goes from (0, 0) to (2n,−2). We now claim that this map
establishes a bijection between bad paths from (0, 0) to (2n, 0) and all lattice paths from (0, 0) to (2n,−2).
Indeed, this map is injective, and there is an inverse: take any lattice path from (0, 0) to (2n,−2), take
the first point where it touches the line y = −1, and reflect the right part – we get a bad path.

Now, the paths from (0, 0) to (2n,−2) contain n− 1 steps up and n+ 1 steps down, so the number of
all paths from (0, 0) to (2n,−2) is

(
2n
n+1

)
. Thus,

Cn =

(
2n

n

)
−
(

2n

n+ 1

)
=

(2n)!

n!n!
− (2n)!

(n− 1)!(n+ 1)!
=

(2n)!

n!n!
− n

n+ 1

(2n)!

n!n!
=

1

n+ 1

(
2n

n

)

Proof 2: by cyclic shifts. First, observe that

1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
=

1

2n+ 1

(2n+ 1)!

n!(n+ 1)!
=

1

2n+ 1

(
2n+ 1

n

)
.

Interpret
(
2n+1
n

)
as all lattice paths from (0, 0) to (2n+ 1,−1), i.e. paths with n steps up and n+ 1 steps

down. Then Cn is the number of those paths (call them good) that go below the x-axis at the last step
only. We want to show that good paths constitute precisely 1/(2n+ 1) part of all paths.

Let us switch to sequences of ±1. Take any sequence (ε1, . . . , ε2n+1) of length 2n+ 1 adding up to −1,
and consider all its 2n+ 1 cyclic shifts:

(ε1, . . . , ε2n+1), (ε2, ε3, . . . , ε2n+1, ε1), (ε3, . . . , ε2n+1, ε1, ε2), . . . , (ε2n+1, ε1, . . . , ε2n).

Now the proof follows from the following statement which we leave as an exercise
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Exercise. (1) Show that all cyclic shifts are distinct.
(2) Show that out of 2n + 1 shifts of one sequence precisely one is good. (Hint: consider the leftmost
lowest point of the path).

Definition 1.8. Let (an)n∈Z≥0
be a sequence of non-negative integers. A formal power series

∞∑
k=0

akx
k is

called a generating function of (an).

Example 1.9. Let an = 1 for every n. The the generating function is A(x) = 1 + x+ · · · = 1/(1− x).

In general, how to find a closed formula for the generating function A(x) of a sequence (an)? One can
follow the following plan:

· write a recurrence relation on an;

· interpret the recurrence relation as an equation on A(x);

· solve the equation and get an explicit expression for an.

We will proceed along this plan to get a third proof of the theorem.

Lemma 1.10 (Recurrence on Catalan numbers).

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0 =
n∑
k=1

Ck−1Cn−k

Proof. Take any Dyck path of length 2n, and consider the first point 2k > 0 where the path touches the
x-axis. Then on the right there is a Dyck path of length 2n− 2k = 2(n− k). On the left there is a Dyck
path of length 2k which stays strictly above x-axis, which means that we can think of it as a Dyck path
of length 2k − 2 between points (1, 1) and (2k − 1, 1). Both Dyck paths on the left and on the right are
arbitrary, so there are precisely Ck−1 · Cn−k Dyck paths which touch x-axis for the first time at 2k, and
the result follows.

Defining C0 = 1, we can now recursively compute any Catalan number.

Example 1.11.

C1 = C0 ·C0 = 1; C2 = C0 ·C1 +C1 ·C0 = 1 + 1 = 2; C3 = C0 ·C2 +C1 ·C1 +C2 ·C0 = 2 + 1 + 2 = 5.

Lemma 1.12. The generating function C(x) satisfies the equation xC(x)2 − C(x) + 1 = 0.

Proof. We know that Cn =
n∑
k=1

Ck−1Cn−k. Multiplying by xn, we get

Cnx
n =

n∑
k=1

Ck−1Cn−kx
n = x

n∑
k=1

(Ck−1x
k−1)(Cn−kx

n−k)
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Now, summing on n > 0, we get on the left
∞∑
n=1

Cnx
n = C(x)− C0 = C(x)− 1. On the right, we get

∞∑
n=1

n∑
k=1

x(Ck−1x
k−1)(Cn−kx

n−k) = x

∞∑
n=1

n−1∑
i=0

(Cix
i)(Cn−i−1x

n−i−1) =

= x

∞∑
m=0

m∑
i=0

(Cix
i)(Cm−ix

m−i) = x · C(x) · C(x),

so we obtain the equation C(x)− 1 = xC(x)2, which is precisely what we wanted.

Lemma 1.13.

C(x) =
1−
√

1− 4x

2x

Proof. Solving quadratic equation with respect to C(x) (while considering x as a parameter), we see that

C(x) = 1±
√
1−4x
2x . The reason to choose the sign is the following: we want lim

x→0
C(x) = C(0), where we

already know C(0) = C0 = 1. Now, if we consider the positive sign, then lim
x→0

C(x) = ∞, while the

negative sign gives the required limit.

We are left to extract the explicit expression for Cn from the generating function. For this, we recall
the definition of a generalization of binomial coefficients.

Definition 1.14. Given α ∈ R and k ∈ N, the binomial coefficient
(
α
k

)
is given by(

α

k

)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!

Exercise. Show that

(1 + y)α =
∑
k≥0

(
α

k

)
yk

We now apply the exercise above to α = 1/2, y = −4x. We get

√
1− 4x =

∑
k≥0

(1
2

k

)
(−4x)k = 1 +

(1
2

1

)
(−4x) +

(1
2

2

)
(−4x)2 + . . . ,

so

C(x) =
1−
√

1− 4x

2x
= −1

2

((1
2

1

)
(−4) +

(1
2

2

)
(−4)2x+ . . .

)
= −1

2

∑
n≥0

( 1
2

n+ 1

)
(−4)n+1xn

 .

Therefore,

Cn = −1

2

( 1
2

n+ 1

)
(−4)n+1 = −1

2

1
2(12 − 1)(12 − 2) . . . (12 − n)

(n+ 1)!
(−4)n+1 =

− 1

2

1
2(−1

2)(−3
2) . . . (−2n−1

2 )

(n+ 1)!
(−4)n+1 =

1 · 3 · . . . · (2n− 1)

(n+ 1)!

22n+2

2n+2
=

(2n)!

(2nn!)(n+ 1)!
· 2n =

1

n+ 1

(
2n

n

)
as required.
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1.3 Further examples and Applications

Example 1.15 (Drunkard’s walk). A drunkard walks randomly along a line in steps of length 1 to the
left or right with probability 1/2. The starting point is x = 1. The walk is terminated when the drunkard
reaches the point x = 0. Question: what is the probability the walk terminates?

Reaching x = 0 after 2k + 1 steps is equivalent to returning to x = 1 after 2k steps and then going
left, so this can be understood as a Dyck path. The probability of any individual path is (1/2)2k+1, the
number of such paths of length 2k + 1 is clearly Ck. Thus,

P =

∞∑
k=0

Ck
1

22k+1
=

1

2

∞∑
k=0

Ck
1

22k
=

1

2

∞∑
k=0

Ck

(
1

4

)k
=

1

2
C

(
1

4

)
=

1

2

1−
√

1− 41
4

21
4

= 1

We list below some further interpretations of Catalan numbers Cn.

· The number of plane binary trees with n vertices.

A plane binary tree can be defined recursively: if not empty, it has a root vertex, a left subtree, and
a right subtree, both of which are binary trees (either of them can be empty). When drawing such
trees, the root is drawn on the top, with an edge drawn from it to the root of each of its subtrees.
All binary trees with 5 vertices are shown in Fig. 1.2.

Figure 1.2: Plane binary trees with 3 vertices

· The number of complete plane binary trees with n+ 1 leaves.

A plane binary tree is complete if it has no vertices of valence 2, i.e., for every vertex both left
and right subtrees are either simultaneously nonempty or empty (in the latter case the vertices are
called leaves). All complete binary trees with 4 leaves are shown in Fig. 1.3.

Figure 1.3: Complete plane binary trees with 4 leaves

· The number of plane trees with n+ 1 vertices.

A plane tree can also be defined recursively: it has a root vertex, and, in the case the whole tree
is not a single vertex, it has a sequence (T1, . . . , Tk) of subtrees Ti, 1 ≤ i ≤ k, each of which is also
a plane tree. In particular, the subtrees of each vertex are ordered; when drawing such trees, the
subtrees are drawn from left to right. The root is on the top, with an edge drawn from it to the
root of each of its subtrees. All plane trees with 4 vertices are shown in Fig. 1.4.

Figure 1.4: Plane trees with 4 vertices
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· The number of non-crossing matchings on 2n vertices.

A matching on 2n vertices can be drawn as a way to connect 2n nodes on the x-axis by arcs,
with every node connected to precisely one other node by an arc drawn in the upper halfplane. A
matching is non-crossing if all arcs can be drawn in a way such that no pair of arcs intersects.

All non-crossing matchings on 6 vertices are shown in Fig. 1.5.

Figure 1.5: Non-crossing matchings on 6 vertices

· The number of non-nesting matchings on 2n vertices.

A matching is non-nesting if all the arcs can be drawn in a way such that no arc is above the
other, or, equivalently, there is no pair of arcs with ends at points (a1, b1) and (a2, b2) such that
a1 < a2 < b2 < b1.

All non-nesting matchings on 6 vertices are shown in Fig. 1.6.

Figure 1.6: Non-nesting matchings on 6 vertices

2 Partitions and Young Diagrams

2.1 Definitions

Definition 2.1. A partition of n ∈ N is a sequence of integers λ = (λ1, . . . , λk) such that
k∑
i=1

λi = n and

λ1 ≥ λ2 ≥ · · · ≥ λk > 0. If (λ1, . . . , λk) is a partition of n, we denote (λ1, . . . , λk) ` n.

Example. 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Graphically, a partition can be represented by a Young diagram which is a left-justified array of boxes
arranged in k rows, such that i-th row contains λi boxes, see Fig. 2.1, left, for an example.

1 4 8 10 12

2 5 9

3 7

6 11

Figure 2.1: Young diagram of the partition λ = (5, 3, 2, 2) ` 12 and a standart Young tableau of type λ
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Definition 2.2. A standard Young tableau (SYT for short) is a filling of a Young diagram of type
λ = (λ1, . . . , λk) ` n by numbers 1, . . . n such that each number appears precisely once, and entries
increase in rows (to the right) and in columns (downwards).

See Fig. 2.1, right, for an example.

Example 2.3. Let us compute the number of SYT of shape (n, n). One can assign to any such SYT
a Dyck path: put a step up at every place appearing in the first row, and a step down at every place
appearing in the second row. It is easy to see that this is a bijection, so the number of SYT of shape
(n, n) is just the Catalan number Cn.

Denote by fλ the number of SYT of type λ (for example, f(n,n) = Cn as we have seen above). Our
next goal is to obtain a formula for fλ.

2.2 The Hook Length Formula

Definition 2.4. Let (i, j) be a box in a Young diagram λ. The hook of (i, j) is the union of all boxes
in i-th row to the right of (i, j) and all boxes in j-th column to the bottom of (i, j), i.e., {(i, b) | b ≥
j} ∪ {(a, j) | a ≥ i}. The hook length h(i, j) is the number of boxes in the hook of (i, j).

An example is shown in Fig. 2.2.

Figure 2.2: The hook of box (2, 2) is shaded, h(2, 2) = 8

Denote H(λ) =
∏

(i,j)∈λ
h(i, j).

Theorem 2.5 (The Hook Length Formula). For every partition λ ` n, fλ = n!
H(λ) .

Example 2.6. · Let λ = (4, 2, 2) ` 8. Then H(λ) = (6 · 5 · 2 · 1) · (3 · 2) · (2 · 1) = 6!, so fλ = 8!
6! = 56.

· Let λ = (n, n). Then f(1, j) = n− j + 2 and f(2, j) = n− j + 1. Therefore,

H(λ) = ((n+ 1) · . . . · 2) · (n · . . . · 1) = (n+ 1)!n!,

and thus

f(n,n) =
(2n)!

(n+ 1)!n!
= Cn

Let us first prove a recurrence relation on fλ. Let λ be a Young diagram, and let c be a corner of
λ, i.e. a box which does not have neighbors from right and bottom. Denote by λ − c a Young diagram
obtained from λ by removing the box c.
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Lemma 2.7. Define f∅ = 1. Then

fλ =
∑

c is a corner of λ

f(λ− c)

Proof. Observe that n is always in the corner of any SYT of shape λ ` n. If c is a corner of λ ` n, there
is a clear bijection between SYT of shape λ with n located at box c and SYT of shape λ − c ` (n − 1).
Therefore,

fλ =
∑

c is a corner of λ

(number of SYT of shape λ with n at c) =
∑

c is a corner of λ

f(λ− c)

as required.

To prove the theorem, we will use induction on the size of the Young diagram: the induction step
will be to show that the numbers n!/H(λ) satisfy the same recursion as in Lemma 2.7. The base is easy:
for a one-box Young diagram, all numbers in the equation are equal to 1. Thus, we need to prove the
following.

Lemma 2.8. For every Young diagram λ ` n, we have∑
c is a corner of λ

(n− 1)!

H(λ− c)
=

n!

H(λ)

The Theorem 2.5 then follows: once we prove Lemma 2.8, we have

fλ =
∑

c is a corner of λ

f(λ− c) =
∑

c is a corner of λ

(n− 1)!

H(λ− c)
=

n!

H(λ)
,

where the first equality follows from Lemma 2.7, the second one is the induction assumption (applied to
every corner of λ), and the last one is Lemma 2.8.

Observe that the equality in Lemma 2.8 can be reformulated as∑
c is a corner of λ

1

n

H(λ)

H(λ− c)
= 1

Therefore, we can try to interpret the summands in the left hand side as probabilities of some events. In
other words, we will proceed according to the following plan: given λ ` n, find a random process, such
that the space of outcomes is the set of corners of λ, and the probability of the outcome c is precisely
1
n

H(λ)
H(λ−c) . Then the sum of probabilities is automatically equal to 1, and thus we get the statement of the

lemma.
The random process we will use is called a hook walk and is defined as follows.

(1) Choose randomly a box b1 in λ, the probability of this is p(b1) = 1/n.

(2) Choose randomly a box b2 6= b1 in the hook of b1, the probability of this is 1/(h(b1)− 1).

(3) Repeat Step (2) until reach a corner.
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Denote by P (b, c) the probability of the walk starting at a box b ends in a corner c. The probability of
an individual hook walk b = b1 → b2 → · · · → bk = c is equal to

1

h(b1)− 1
. . .

1

h(bk−1)− 1
,

which implies that

P (b, c) =
∑

all walks b=b1→b2→···→bk=c

1

h(b1)− 1
. . .

1

h(bk−1)− 1

Define

P (c) =
1

n

∑
b∈λ

P (b, c),

then
∑

c is a corner of λ

P (c) = 1. Therefore, we need to prove that

P (c) =
1

n

H(λ)

H(λ− c)
,

or, equivalently, ∑
b∈λ

P (b, c) =
H(λ)

H(λ− c)

Example 2.9. Let λ = (3, 2, 1) ` 6. There are four hook paths ending in the corner located in the first
row (denote it by c1), same for the corner c3 in the third row, and five hook paths ending in the remaining
corner c2. Then P (c1) = P (c3) = 5/16, and P (c2) = 3/8.

Let us make some observations.

· Let c = (u, v) be a corner. Then any hook walk ending in c is contained in the rectangle with
vertices at (1, 1), (1, v), (u, 1) and (u, v).

· If c = (u, v) is a corner, and p ≤ u, q ≤ v, then h(p, q)+h(u, v) = h(p, v)+h(u, q). Since h(u, v) = 1,
this implies the equality

h(p, q)− 1 = (h(p, v)− 1) + (h(u, q)− 1)

Define a weight wt (p, q) of a box (p, q) by

wt (p, q) =
1

h(p, q)− 1

Then, if we denote 1/x = wt (u, q) and 1/y = wt (p, v), the equality above says that wt (p, q) =
1/(x+ y).

· For any path, define its weight as the product of weights of all its boxes. Then we can write P (b, c)
as the sum of weights of all hook walks from b to c.

To complete the proof, we need further two technical lemmas.

Lemma 2.10. Consider all lattice paths in a rectangle (l+ 1)× (k+ 1) from the top left box to the bottom
right box. Denote

1

xj
= wt (l + 1, j),

1

yi
= wt (i, k + 1), xk+1 = yl+1 = 1.

Then ∑
γ is a lattice path

wt (γ) =
1

x1 . . . xky1 . . . yl
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1

x1 + y1

1

x2 + y1

1

y1

1

x1

1

x2
1

l = 1

k = 2

Figure 2.3: Weights of boxes in a 2× 3 rectangle

Example. Let l = 1, k = 2, so we consider paths in a 2 × 3 rectangle, see Fig. 2.3. There are
(
k+l
k

)
=(

3
2

)
= 3 lattice paths from top left box to the bottom right one. Then we can compute the sum of weights

of the three paths:

∑
γ is a lattice path

wt (γ) =
1

x1 + y1
· 1

x2 + y2
· 1

y1
·1+

1

x1 + y1
· 1

x2 + y2
· 1

x2
·1+

1

x1 + y1
· 1

x1
· 1

x2
·1 =

1

x1x2y1

Proof of Lemma 2.10. We use induction on k+ l. If k+ l = 0, then we have a 1× 1 square and both sides
are equal to one. To prove the induction step, observe that every path starts either from a horizontal
step or from a vertical one, i.e. the second box b2 in the path has coordinates (1, 2) or (2, 1) respectively.
In both cases the remaining part of the path lies in a smaller rectangle, so we may use the induction
assumption. More precisely, we have∑

γ is a lattice path

wt (γ) =
∑

γ | b2=(1,2)

wt (γ) +
∑

γ | b2=(2,1)

wt (γ) =

=
1

x1 + y1

1

x1 . . . xky2 . . . yl
+

1

x1 + y1

1

x2 . . . xky1 . . . yl
=

1

x1 + y1

1

x2 . . . xky2 . . . yl

x1 + y1
x1y1

=

=
1

x1 . . . xky1 . . . yl

In the next lemma we will consider hook walks, i.e. we are allowed to miss steps in a lattice path.

Lemma 2.11. Consider all hook walks in a rectangle (l + 1) × (k + 1) ending in the bottom right box.
Define xj and yi as in Lemma 2.10. Then

∑
γ is a hook walk

wt (γ) =

(
1 +

1

x1

)
. . .

(
1 +

1

xk

)(
1 +

1

y1

)
. . .

(
1 +

1

yl

)

Proof. The proof follows from an easy observation: all hook walks are precisely lattice paths is some
subrectangles (i.e., a rectangle constructed from boxes lying in the intersection of some of rows and some
of columns of the initial rectangle). Now, choosing 1 or 1/xj in the product is equivalent to the column
j to be either absent or present in the subrectangle, respectively. The same holds for choosing 1 or 1/yi
and presence of column i. Then every such term has the form as in Lemma 2.10.
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We can now complete the proof of Lemma 2.8. Recall that the corner c has coordinates (u, v). By
Lemma 2.11, we have

P (c) =
1

n

∑
b∈λ

P (b, c) =
1

n

∑
γ is a hook walk

wt (γ) =

=
1

n

(
1 +

1

x1

)
. . .

(
1 +

1

xk

)(
1 +

1

y1

)
. . .

(
1 +

1

yl

)
=

1

n

∏
b = (u, j) | j < v
b = (i, v) | i < u

(
1 +

1

h(b)− 1

)
=

=
1

n

∏
b = (u, j) | j < v
b = (i, v) | i < u

(
h(b)

h(b)− 1

)
=

1

n

H(λ)

H(λ− c)
,

where the last equality holds since the only boxes for which the hook lengths differ in λ and λ − c are
precisely those located at row u and column v, and their hook lengths in λ− c are one less than in λ.

2.3 Set partitions

In the previous sections we considered “unlabeled” partitions. We will now consider the “labeled” version.
Denote by [n] the set of integers 1, . . . , n.

Definition 2.12. A set partition of [n] is a subdivision of [n] into a disjoint union of non-empty subsets
(blocks).

Example 2.13. Let n = 7, we can write [7] = {1, 7}∪{2, 3, 5}∪{4, 6} – this is one of partitions ot shape
(3, 2, 2) ` 7. Notation: if we call this partition π, we write π = (1 7 | 2 3 5 | 4 6) (note that the order of
blocks does not matter).

Graphically, we can draw set partitions as arc diagrams: vertices correspond to set elements 1, . . . , n,
consequitive elements in one block are joined by an arc, see Fig. 2.4, left.

1 x
2 x

3 x

4 x

5
6

7

Figure 2.4: Partition (1 7 | 2 3 5 | 4 6) of [7]: arc diagram and rook placement

The arc diagrams representing set partitions are characterized as follows: every vertex is incident to
at most one arc from the left and at most one arc from the right.

Example 2.14. Another graphical interpretation of set partitions is a non-attacking rook placement. If
we have a partition of [n], consider a chess “half-board” obtained from the square n × n by taking all
boxes (i, j) with i < j. Then place a rook in the box (i, j) if the corresponding arc diagram contains an
arc connecting i and j, see Fig. 2.4, right.

Exercise. Show that rooks placed as described above do not attack each other. Show that this map has
an inverse: any non-attacking rook placement gives rise to a set partition.
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Note that the number of rooks (which is also the number of arcs) is equal to n − k, where k is the
number of blocks.

Definition 2.15. The number of set partitions of [n] is called Bell number B(n). The number of set
partitions of [n] into k blocks is called Stirling number of second kind S(n, k), i.e. B(n) =

∑n
k=1 S(n, k).

Example 2.16. There are five set partitions of [3], namely

(1 | 2 | 3), (1 2 | 3), (1 | 2 3), (1 3 | 2), (1 2 3),

so B(3) = 5, S(3, 1) = S(3, 3) = 1, S(3, 2) = 3.

Definition 2.17. A set partition is non-crossing if the arc diagram is non-crossing. A set partition is
non-nesting if the arc diagram is non-nesting.

Example 2.18. For n = 1, 2, 3 all set partitions are non-crossing and non-nesting. For n = 4, there is
precisely one set partition which is not non-crossing and one which is not non-nesting.

Exercise. Compute B(4) by listing all arc diagrams.

Note that arc diagrams of non-crossing (non-nesting) partitions are not the same as of non-crossing
(non-nesting) matchings. However, the following result holds.

Theorem 2.19. The number of non-crossing set partitions of [n] is equal to the number of non-nesting
set partitions of [n] and is equal to the Catalan number Cn.

Definition 2.20. Given a Dyck path, a peak is a local maximum (i.e., a step up followed by a step down),
and a valley is a local minimum (i.e., a step down followed by a step up). Clearly, the number of peaks
exceeds the number of valleys by one.

Proof of Theorem 2.19. First we construct a bijection between non-nesting set partitions of [n] and Dyck
paths of length 2n. A partition is not non-nesting if and only if there are two arcs (ai, bi) such that
ai < aj < bj < bi. This is equivalent to the rook (aj , bj) in the corresponding rook placement being
located in the positive octant with respect to the origin at (ai, bi) (here by “positive” we mean standard
coordinates in R2). Therefore, the equivalent criterion for a set partition being non-nesting is the following:
the positive octant with respect to every rook does not contain any other rook.

Now we can construct the map: take a set partition, consider the corresponding rook placement, draw
the union of all positive octants centered at rooks, and then the boundary of this domain will be a Dyck
path. The inverse map is constructed as follows: put rooks in all valleys of a Dyck path.

Given a Dyck path, a non-crossing partition can be constructed via a “shelling algorithm”, see Fig. 2.5
for an example.

Exercise 2.21. Fill in the details of the proof.

Definition 2.22. Narayana number N(n, k) is the number of Dyck paths of length 2n with k peaks.

Corollary 2.23 (of the proof of Thm. 2.19). The number of non-nesting partitions of [n] with k blocks
is equal to N(n, n− (k − 1)).

Example 2.24. Let us compute N(4, 2), i.e. the number of Dyck paths of length 8 with 2 peaks. By
Cor. 2.23, N(4, 2) is equal to the number of non-nesting partitions of [4] with 3 blocks, which, in its turn,
is equal to the number of rook placements, where the number of rooks is equal to 4− 3 = 1. The number
of boxes in the upper half of the 4× 4 board is equal to 6, so there are 6 ways to place one rook, and thus
N(4, 2) = 6.

12



1 x

2 x

3 x

4
x5

6

7
(a)

1

2

3

4

5

6

7
(b)

Figure 2.5: (a) non-nesting partition (1 3 5 6 | 2 4 | 7) of [7]: rook placement and Dyck path; (b) non-
crossing partition (1 7 | 2 3 | 4 6 | 5) of [7] and its Dyck path

2.4 Generating functions

Recall: if we have a sequence (an), we can define a generating function of (an), which is a formal power
series a0 + a1x + a2x

2 + . . . . This is an ordinary generating fuction. We can also define an exponential
generating fuction.

Definition 2.25. Exponential generating function of a sequence (an)n≥o is a formal power series
∞∑
n=0

an
xn

n! .

Usually, ordinary generating functions are used when the objects are unlabeled, and exponential
generating functions are used when the objects are labeled.

Example 2.26. The number pn counts integer partitions of n, i.e. the number of Young diagrams λ ` n.
Bell number B(n) counts partitions of [n]. Bell numbers are “labeled versions” of p(n), so it is reasonable
to look for an ordinary generating function for (pn) and an exponential generating function for (Bn).

Our next goal is to write the generating functions for p(n) and B(n).

2.4.1 Integer partitions

Let λ = (λ1, . . . , λk) ` n be a partition. We can write it as λ = 1m12m23m3 . . . , where mi is the number
of λj = i.

Example. λ = (4, 2, 1, 1, 1) ` 9 can be written as λ = 13213041 (formally, there are infinitely many zero
powers at the end, but we omit all factors r0 for r > λ1).

The notation above provides a bijection between all partitions of natural numbers and all sequences
(mi)i>0 of non-negative integers with finite number of positive entries. Given a sequence (mi), it corre-
sponds to a partition of n = 1 ·m1 + 2 ·m2 + 3 ·m3 . . . . If λ ` n, denote |λ| = n.

Then the (ordinary) generating function of p(n) is∑
n≥0

p(n)xn =
∑
n≥0

xn + xn + · · ·+ xn︸ ︷︷ ︸
p(n) summands

=
∑

n≥0, λ`n
x|λ| =

∑
λ any partition

x|λ| =

=
∑

m1,m2,···≥0
x1·m1+2·m2+3·m3+... =

∑
m1≥0

xm1

∑
m2≥0

x2m2

∑
m3≥0

x3m3

 · · · =
=

1

1− x
1

1− x2
1

1− x3
· · · =

∏
k≥1

1

1− xk

Note that although the product is infinite, the number of terms contributing to any coefficient is finite.
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2.4.2 The exponential formula

Let numbers cn count some objects on n labeled nodes (call them c-objects), where n > 0. Let c(x) =∑
n≥1

cn
xn

n! be the exponential generating function of (cn).

Define d-objects on n nodes as collections of c-objects on n1, . . . , nk nodes such that n1 + · · ·+nk = n.
Let d(x) =

∑
n≥0

dn
xn

n! be the exponential generating function of (dn).

Example 2.27. Let c-objects be linear graphs on n nodes (or, equivalently, sequences of n distinct
numbers 1, . . . , n). Then cn = n!, and thus c(x) = x+ x2 + · · · = x

1−x .
Then d-objects are graphs on n nodes, such that any connected component is a linear graph (or,

equivalently, unions of sequences of total length n). How to compute d(x)?

Lemma 2.28 (Exponential formula).
d(x) = ec(x)

Proof. A d-object on n nodes consists of a set partition of [n], n = n1 + · · ·+ nk, and then a c-object on
every block. Let us fix k and n1, . . . , nk, and compute d-objects.

The number of ways to subdivide n into k blocks of size n1, . . . , nk is equal to the multinomial coefficient(
n

n1 n2 . . . nk

)
=

n!

n1!n2! . . . nk!

We have a c-object on every block, so the number of d-object with fixed k and n1, . . . , nk is equal to

1

k!

(
n

n1 n2 . . . nk

)
cn1 . . . cnk

,

where we divide by k as we are not interested in the order of the blocks.
Now take a sum over k ≥ 0 and n1 + · · ·+ nk = n:

dn =
∑
k≥0

∑
n1 + · · ·+ nk = n
n1, . . . , nk ≥ 1

1

k!

n!

n1!n2! . . . nk!
cn1 . . . cnk

,

which implies that
dn
n!

=
∑
k≥0

∑
n1 + · · ·+ nk = n
n1, . . . , nk ≥ 1

1

k!

cn1

n1!

cn2

n2!
. . .

cnk

nk!
,

and thus

d(x) =
∑
n≥0

dn
xn

n!
=
∑
n≥0

∑
k≥0

∑
n1 + · · ·+ nk = n
n1, . . . , nk ≥ 1

1

k!

cn1

n1!

cn2

n2!
. . .

cnk

nk!
=

=
∑
k≥0

1

k!

∑
n1,...,nk≥1

cn1x
n1

n1!

cn2x
n2

n2!
. . .

cnk
xnk

nk!
=
∑
k≥0

1

k!

∑
m≥1

cmx
m

m!

k

=
∑
k≥0

1

k!
c(x)k = ec(x).
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Corollary 2.29. The exponential generating function for Bell numbers is

B(x) = ee
x−1

Proof. Let c-objects be just sets (so, cn = 1), and d-objects be collections of sets of total cardinality
n. Then d-objects are precisely partitions of [n]. Since cn = 1, we have c(x) = ex − 1, and thus
B(x) = d(x) = ee

x−1 by the exponetial formula.

3 Permutations

3.1 Definitions and notation

Recall that a permutation is a bijection w : [n] → [n]. Permutations form a group (called symmetric
group) Sn with respect to composition, the order of the group is n!.

There are several notations for w ∈ Sn.

· 2-line notation: if w(i) = wi, we write

w =

(
1 2 . . . n
w1 w2 . . . wn

)
, e.g. w =

(
1 2 3 4 5 6 7
3 2 6 1 5 7 4

)
∈ S7;

· 1-line notation: we simply write w = w1, w2, . . . , wn, or even w = w1w2 . . . wn, e.g. w = 3 2 6 1 5 7 4;

· cycle notation: recall that every permutation can be decomposed a a product of disjoint cycles. For
the permutation above, we have w = (1 3 6 7 4)(2)(5). Note that the order of cycles is irrelevant,
as well as the starting point of each cycle: we could also write w = (2)(6 7 4 1 3)(5).

3.2 Statistics on permutations

Definition 3.1. A statistics on permutations is a function σ : Sn → Z≥0. Its generating function is a
polynomial fσ(x) =

∑
w∈Sn

xs(w).

Two statistics σ and µ are equidistributed if fσ(x) = fµ(x), i.e. the number of permutations with the
same value of statistics is the same.

Definition 3.2. Let w ∈ Sn.

· An inversion is a pair (i, j) such that i < j, wi > wj ;

· A descent is i ∈ [n− 1] such that wi+1 < wi.

We can now look at some statistics on Sn.

· inv (w) is the number of inversions in w;

· des (w) is the number of descents in w;

· cyc (w) is the number of cycles in w.

Example 3.3. Let w = 3 2 6 1 5 7 4 ∈ S7. Then inv (w) = 8, des (w) = 3, cyc (w) = 3.
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Definition 3.4. A statistics on Sn is called Mahonian if it is equidistributed with inv , and Eulerian if it
is equidistributed with des .

Example 3.5. Let n = 3, order permutations by the number of inversions. Then we have the following.

w 1 2 3 2 1 3 1 3 2 2 3 1 3 1 2 3 2 1

inv (w) 0 1 1 2 2 3

des (w) 0 1 1 1 1 2

cyc (w) 3 2 2 1 1 2

In particular, we can see that all three statistics are different.
We can also compute the generating functions:

finv (x) = 1 · x0 + 2 · x1 + 2 · x2 + 1 · x3 = (1 + x)(1 + x+ x2)

fdes (x) = 1 · x0 + 4 · x1 + 1 · x2 = 1 + 4x+ x2

fcyc (x) = 0 · x0 + 2 · x1 + 3 · x2 + 1 · x3 = x(x+ 1)(x+ 2)

Theorem 3.6. For every n ∈ N,

finv (x) = (1 + x)(1 + x+ x2) . . . (1 + x+ · · ·+ xn−1) =

n∏
k=1

(1− xk)

(1− x)n

Proof. We use induction on n. For n = 1 the result is clear (as for n = 2, 3). Assume that the theorem
holds for n − 1. Take any permutation w′ ∈ Sn−1 and “insert” n in all possible n places. Depending on
the place where n is inserted, we add from 0 to n− 1 inversions, where all numbers show up. Therefore,
the generating function is

finv (x) =
∑
w∈Sn

xinv (w) =
∑

w′∈Sn−1

xinv (w′)+x
∑

w′∈Sn−1

xinv (w′)+x2
∑

w′∈Sn−1

xinv (w′)+· · ·+xn−1
∑

w′∈Sn−1

xinv (w′) =

=

 ∑
w′∈Sn−1

xinv (w′)

 (1 + x+ · · ·+ xn−1) = (1 + x)(1 + x+ x2) . . . (1 + x+ · · ·+ xn−1),

where the last equality follows from the induction assumption.

Definition 3.7. The Major index of w ∈ Sn is maj (w) =
∑

k is a descent of w

k.

Example 3.8. For w = 3 2 6 1 5 7 4 ∈ S7, we have maj (w) = 1 + 3 + 6 = 10.
For n = 3, we have

w 1 2 3 2 1 3 1 3 2 2 3 1 3 1 2 3 2 1

maj (w) 0 1 2 2 1 3

and thus fmaj (x) = 1 + 2x+ 2x2 + x3 = (1 + x)(1 + x+ x2) = finv (x).

Exercise. Show that fmaj (x) = finv (x) for every n ∈ N, i.e. maj is Mahonian.

Definition 3.9. Let w = w1w2 . . . wn ∈ Sn, wi is a record of w if wi > wj for all j < i. Denote by
rec (w) the number of records of w.
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Example. for w = 3 2 6 1 5 7 4 ∈ S7, we have rec (w) = 3.
For n = 3, we have

w 1 2 3 2 1 3 1 3 2 2 3 1 3 1 2 3 2 1

rec (w) 3 2 2 2 1 1

and thus frec (x) = 2x+ 3x2 + x3 = fcyc (x).

Theorem 3.10. frec (x) = fcyc (x) for every n ∈ N.

Proof. We construct a bijection f : Sn → Sn, such that if w′ = f(w) then rec (w′) = cyc (w).
First, write the cycle decomposition in a standard way: if w = (a1 . . . )(a2 . . . ) . . . (ak . . . ) then every

ai is maximal in its cycle, and a1 < a2 < · · · < ak.
Now, the map f takes w written in the standard way above to w′ by erasing all brackets (and

considering the result as a 1-line notation for w′). Clearly, records are first elements of cycles, so rec (w′) =
cyc (w).

The map f has an inverse: take any permutation w′ in 1-line notation, put brackets in the begin-
ning and at the end, and then put closing and opening brackets before every record. We get a cycle
decomposition of some permutation w. Then f(w) = w′.

Example 3.11. The preimage of w = 3 2 6 1 5 7 4 ∈ S7 under f is u = (3 2 6)(1 5)(7 4).
Now, w = 3 2 6 1 5 7 4 = (1 3 6 7 4)(2)(5) = (2)(5)(7 4 1 3 6), so f(w) = 2 5 7 4 1 3 6.

Definition 3.12. Let w = w1w2 . . . wn ∈ Sn, i ∈ [n] is an excedance of w if i < wi. Denote by exc (w)
the number of excedances of w.

Example. For w = 3 2 6 1 5 7 4 ∈ S7, we have exc (w) = 3.
For n = 3, we have

w 1 2 3 2 1 3 1 3 2 2 3 1 3 1 2 3 2 1

exc (w) 0 1 1 2 1 1

and thus frec (x) = 1 + 4x+ x2 = fdes (x).

Theorem 3.13. fexc (x) = fdes (x) for every n ∈ N, so exc is Eulerian.

Proof. Define anti-excedance of w as i ∈ [n] such that i > wi. Observe, that anti-excedances of w are
precisely excedances of w−1, so anti-excedances and excedances are equidistributed.

Now, we claim that the map f from the proof of Thm 3.10 takes anti-excedances of w to descents of
w′ = f(w).

Exercise. Complete the proof of the theorem.

4 Posets and lattices

4.1 Definitions

Definition 4.1. A partially ordered set, or poset, P is a set with a binary relation ≤ (or ≤P if there is
an ambiguity) satisfying the following axioms:

· a ≤ a (reflexivity);
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· if a ≤ b and b ≤ c then a ≤ c (transivity);

· if a ≤ b and b ≤ a then a = b (symmetry).

We say a < b if a ≤ b and a 6= b, and the notation a ≥ b means that b ≤ a.
Two elements are incomparable if a 6≤ b and b 6≤ a.

Example 4.2. Any ordered field (e.g. R) is a poset, where one considers usual order relation. (Such
posets are totally ordered, i.e. they do not contain incomparable elements).

The power set of any set (i.e., the set of all subsets), with the order being inclusion, is also a poset
(see below). Two subsets are incomparable if their symmetric difference is not empty.

Definition 4.3. A covering relation <· in a poset P is defined as follows: a <· b if a < b and there is no
element c ∈ P such that a < c < b.

Definition 4.4. A Hasse diagram of a poset P is an oriented graph, where vertices are elements of P ,
and there is an edge a → b if a < · b. Hasse diagram is usually drawn as an undirected graph with b
positioned above a if a <· b.

Note that any finite poset is uniquely defined by its Hasse diagram.

Example 4.5. The Hasse diagram shown in Fig. 4.1 defines a poset. We have x ≤ y if and only if there
is a path from x to y every step of which goes up. For example, a ≤ c, d, e, f and is not comparable to b.
Overall, there are five pairs of incomparable elements.

a b

c

fe

d

Figure 4.1: Hasse diagram of a poset.

Definition 4.6. A chain in a poset P is a sequence of elements a1 < a2 < · · · < ak. A chain is saturated
if ai <· ai+1 for every i = 1, . . . , k− 1. An antichain is a subset of P consisting of mutually incomparable
elements.

Example. In the poset defined in Fig. 4.1, (c, f) is an antichain, and (a, d, f) is a chain as well as (b, e).

Definition 4.7. A Boolean lattice Bn is the poset of subsets of [n] ordered by inclusion: A ≤ B if A ⊂ B.
The set of subsets (or the power set) of [n] is denoted by 2[n].

Example 4.8. Hasse diagrams for B2 and B3 are shown in Fig. 4.2. Note that for every n the Hasse
diagram for Bn is a 1-skeleton of a cube.

We are interested in the following questions: what are the maximal sizes of chains and antichains in
posets? For example, in the poset defined in Fig. 4.1, these are 3 and 2 respectively. In Bn, the maximal
size of chain is n+ 1, but what is the maximal size of an antichain?
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∅

{1, 2}

{1} {2}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 4.2: Hasse diagram of B2 and B3.

4.2 Sperner’s Theorem

In this section we will answer the question above by proving the following result.

Theorem 4.9 (Sperner’s Theorem). Let S1, . . . , SN be different subsets of [n] such that Si 6⊂ Sj and
Sj 6⊂ Si for any i 6= j. Then N ≤

(
n
bn/2c

)
, where bxc is the maximal integer not exceeding x.

Remark. Note that the bound in the theorem is sharp: the number of bn/2c-subsets of [n] is precisely(
n
bn/2c

)
, and they are all incomparable.

Definition 4.10. A poset P is ranked if there is a function ρ : P → Z such that a < · b implies
ρ(b) = ρ(a) + 1. If P is finite, we assume that the minimal rank is zero. If P is finite and ranked, the
rank numbers ri are defined as the numebrs of elements of p of rank i.

In other words, a poset is ranked if its Hasse diagran can be drawn “on levels”.

Example 4.11. The left poset shown in Fig. 4.3 is ranked, and the right is not.

Figure 4.3: Ranked (left) and not ranked (right) posets.

A finite ranked poset P with non-zero rank numbers r0, . . . , rl is rank symmetric if ri = rl−i, unimodal
if there is k such that r0 ≤ r1 ≤ rk ≥ rk+1 ≥ · · · ≥ rl, and Sperner if the maximal size of antichain is the
maximum of ri (i.e., the maximal size of antichain is minimal possible).

Example 4.12. The Hasse diagram in Fig. 4.4 defines a non-Sperner poset: both rank numbers are four,
but there is an antichain of size five.

Remark. The Boolean lattice Bn is ranked, where ρ(A) = |A|, with ranking numbers ri = ri(Bn) =
(
n
i

)
.

Since
(
n
i

)
=
(
n
n−i
)
, Bn is rank-symmetric. It is also unimodal as(

n

0

)
≤
(
n

1

)
≤ · · · ≤

(
n

bn/2c

)
≥ · · · ≥

(
n

n

)
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Figure 4.4: Non-Sperner rank-symmetric poset. Colored vertices form an antichain of size 5.

Then Theorem 4.9 can be reformulated as: Bn is Sperner.

Definition 4.13. Let P be a finite ranked poset, ρ is the ranking function with values 0, . . . , l. A
symmetric chain decomposition (or SCD for short) of P is a decomposition of P as a disjoint union
P = C1 t C2 t · · · t Ck, such that each Ci is a saturated chain, and if Ci = ai0 <· ai1 <· . . . <· ais then
ρ(ai0) + ρ(ais) = l.

Example. B2 has a SCD: C1 = ∅ <· {1} <· {1, 2} and C2 = {1}.

Lemma 4.14. If a finite ranked poset P has a SCD, then it is rank-symmetric, unimodal and Sperner.

Proof. P is clearly rank-symmetric and unimodal, where the maximal ranking number is ri for i = bl/2c,
as this property holds for every chain in the SCD. We need to show that P is Sperner.

Take any antichain A, then |A ∩ Ci| ≤ 1, so |A| ≤ k. Since every chain Ci intersects the middle level,
the number of chains k = rbl/2c, so the size of any antichain does not exceed the maximal ranking number,
which is precisely the definition of Sperner poset.

Due to Lemma 4.14, to prove Thm 4.9 we are left to show that Bn has a SCD.

Definition 4.15. Let P1, P2 be posets, then P1×P2 is also a poset: we can define the order by (a, b) ≤ (c, d)
if a ≤ c and b ≤ d. Similarly, one can define a product P1 × · · · × Pn of any number of posets.

Observe that Bn = [2]n = [2]× · · · × [2]. Indeed, we can assign to every element A of Bn a sequence
of 0 and 1 of length n, where ai = 0 if i /∈ A and ai = 1 if i ∈ A. Then A ⊂ B is equivalent to ai ≤ bi for
all i, and thus to A ≤ B.

We are now left to prove the following statement.

Theorem 4.16. Any product of chains has a SCD.

Proof. We proceed by induction. First, a product of two chains has a SCD (prove this!). Now take
P = P ′ ×C = (C1 tC2 t · · · tCk)×C. As a product of two chains has a SCD, every Ci ×C has a SCD.
Note that the “middle rank” of all Ci×C is the same – this is guaranteed by the fact P ′ = C1tC2t· · ·tCk
is a SCD. Thus, taking the union of all SCD for Ci × C, i ∈ [k], we obtain a SCD for P .

4.3 Greene’s Theorem

Let P be a finite poset.

Theorem 4.17 (Dilworth). The maximal size of an antichain of P is equal to the minimal number of
chains needed to cover P .

Remark. Note that one inequality in the theorem is evident: an antichain cannot contain more elements
than the number of chains as it intersect every chain at most once.
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A dual version also holds.

Theorem 4.18 (Minsky). The maximal size of a chain of P is equal to the minimal number of antichains
needed to cover P .

More generally, define lk to be the maximal size of a union of k chains of P , and mk to be the maximal
size of a union of k antichains of P . In particular, l0 = m0 = 0, and l1 is the maximal size of a chain in P .

Theorem 4.19 (Greene). Denote λi = li − li−1 for i > 0, and let λ(p) = λ2, λ2, . . . (note that only
finitely many λi are positive). Similarly, denote µi = mi − mi−1 for i > 0, and let µ(p) = µ2, µ2, . . . .
Then λi ≥ λi+1 and µi ≥ µi+1 for all i > 0 (so λ and µ can be considered as Young diagrams or partitions
of |P |), and Young diagrams λ and µ are conjugate to each other, i.e. they are symmetric with respect to
the main diagonal.

Example. Let P be defined by the Hasse diagram shown in Fig. 4.5. Then l1 = 3, l2 = 5, and li = 5 for
i ≥ 2. Also, m1 = 2, m2 = 4, m3 = 5, and mi = 5 for i ≥ 3. Therefore, λ = (3, 2), and µ = (2, 2, 1) which
are clearly conjugated.

Figure 4.5: Hasse diagram of a poset.

Remark. Theorems of Dilworth and Minsky are partial cases of Greene’s Theorem. Indeed, the maximal
size of antichain is m1 = µ1, i.e. the length of the first row of µ. The minimal number of chains needed
to cover P is precisely the number of non-zero λi, i.e. the number of rows of λ. Greene’s Theorem says
that Young diagrams λ and µ conjugate, which implies that the first row of µ is equal to the first column
of λ, and this is precisely Dilworth’s Theorem. Minsky’s Theorem follows similarly.

Given w ∈ Sn, define a poset Pw as follows: elements of Pw are elements of [n], and wi <Pw wj if
wi < wj and i < j.

Example. Let w = 3 2 6 1 5 7 4 ∈ S7. Hasse diagram of Pw is shown in Fig. 4.6.
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456

7

Figure 4.6: Hasse diagram of the poset Pw for w = 3 2 6 1 5 7 4 ∈ S7.
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Exercise. Show that chains of Pw are precisely increasing subsequences of wi, and antichains are de-
creasing subsequences of wi.

Another corollary of Greene’s Theorem is the following statement.

Theorem 4.20 (Erdos–Szekeres). Let m,n ≥ 1. Then any permutation of size at least mn+ 1 contains
either an increasing subsequence of length m+ 1 or a decreasing subsequence of length n+ 1.

Proof. According to Greene’s Theorem, we can associate a Young diagram λ to Pw, in which the length
of the first row is the maximal size of chain in Pw, i.e. the maximal length of an increasing subsequence
in w (see the exercise above). Similarly, the length of the first row of the conjugate Young diagram (and
thus the kength of the first column of λ) is the maximal size of antichain in Pw, i.e. the maximal length
of an decreasing subsequence in w. The rest follows from the following elementary statement.

Exercise. Let λ be a Young diagram, |λ| ≥ mn+ 1. Then either λ1 ≥ n+ 1, or λ′1 ≥ m+ 1, where λ′1 is
the length of the first column of λ.

Exercise. Prove Theorem 4.20 without using Greene’s Theorem.

4.4 Lattices

Definition 4.21. Let P be a poset, x, y ∈ P .

· z ∈ P is a join of x and y (notation z = x ∨ y) if the following hold:

(1) z ≥ x, y;

(2) if v ∈ P and v ≥ x, y then v ≥ z.

Note that (2) implies that if join exists then it is unique.

· t ∈ P is a meet of x and y (notation t = x ∧ y) if the following hold:

(1) t ≤ x, y;

(2) if v ∈ P and v ≤ x, y then v ≤ t.

Again, meet is unique if exists.

· P is a lattice if every two elements have a join and a meet.

Example. Out of the three posets whose Hasse diagrams shown in Fig. 4.7 only the left one is a lattice.
In the other two posets elements x, y have no join.

x ∧ y

x y

x ∧ y

x y

x ∧ y

x y

x ∨ y

Figure 4.7: The poset on the left is a lattice, the other two are not.
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Note that if x ≤ y, then x ∨ y = y and x ∧ y = x.

Exercise. Every finite lattice has a unique minimal and a unique maximal elements (i.e., elements c and
d such that c ≤ x ≤ d for all x).

Lemma 4.22. Boolean lattice Bn is indeed a lattice.

Proof. Observe that if X,Y ∈ Bn, then X ∨ Y = X ∪ Y and X ∧ Y = X ∩ Y .

Example 4.23. Young lattice Y is the poset of all Young diagrams ordered by inclusion. The covering
relation in Y is defined as follows: λ <· µ if µ has precisely one extra box.

Exercise. Check that union and intersection of Young diagrams is again a Young diagram. Show that
Y is a lattice.

Example. Partition lattice Πn consists of all set partitions of [n] ordered by refinement: λ ≤ µ if µ is
obtained by joining together some blocks of λ. The covering relation is then following: λ <· µ is µ is
obtained by combining two blocks of λ.

Exercise. Show that Πn is a lattice.

Definition 4.24. Let P be a poset. An order ideal of P is a set I ⊂ P such that if x ∈ I and y ≤ x then
y ∈ I. Define an order on order ideals: I ≤ J if I ⊂ J . This define a poset of order ideals J(P ).

Example. A poset and its poset of order ideals are shown in Fig. 4.8.

∅

{x, z} {y, z}

{z}

{x, y, z}

x y

z

Figure 4.8: Hasse diagrams of a poset (left) and of its poset of order ideals (right).

Lemma 4.25. J(P ) is a lattice.

Proof. Since the order is defined as in the Boolean lattice, meet and join are the intersection and the
union (which are also order ideals – check this!).

Example 4.26. · Consider a poset on Z≥0 with usual order. Then J(Z≥0) ∼= Z≥0 ∪ {∞} (an order
ideal corresponds to its maximal element).

· J(Z≥0 × Z≥0) ∼= Y (Young lattice)

· We can also interpret Bn as J([n]), where all elements of [n] are incomparable.

Definition 4.27. A Lattice is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
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Remark. An ordered field is not a distributive lattice: only one of the distributivity laws holds.

Exercise. J(P ) is a distributive lattice.

Theorem 4.28 (Fundamental Theorem of Finite Distributive Lattices, Birkhoff). Any finite distributive
lattice is a poset of order ideals for some finite poset.

Proof. Let P be any poset. We call z ∈ P join-irreducible if z 6= x∨ y for any incomparable x, y ∈ P , and
z is not a minimal element of P .

Now, let L be a finite distributive lattice. Define P to be the poset of all join-irreducible elements of
P (with the order inherited from L). We will prove that L = J(P ).

Take x ∈ L, and consider Ix = {y ∈ P | y ≤ x} ⊂ P . Clearly, Ix ∈ J(P ): if y ∈ Ix, z ∈ P and z ≤ y
then z ≤ y ≤ x and thus z ∈ Ix.

Thus, we constructed a map from L to J(P ) taking x ∈ L to Ix ∈ J(P ). We need to show that this
map is injective and surjective. Injectivity follows from the following execise:

Exercise. For every x ∈ L, x = ∨{t | t ∈ Ix}.

Indeed, the excecise implies that if Ix = Iy and x 6= y, then the same set have two different joins,
which is impossible in a lattice. To surjectivity, we will prove the following claim.

Claim. Let I ∈ J(P ), take x = ∨{t | t ∈ I}. Then I = Ix.

The claim explicitly states that the map x 7→ Ix is surjective: for every order ideal of P we find a
preimage. Therefore, we are left to prove the claim.

Proof of the claim. First, I ⊂ Ix: since x = ∨{t | t ∈ I}, t ≤ x for all t ∈ I, and thus every t ∈ I also lies
in Ix by the definition of Ix. We are left to prove that Ix ⊂ I.

Since x = ∨{y | y ∈ Ix} = ∨{t | t ∈ I}, we have

x = ∨{t | t ∈ I} = ∨{y | y ∈ Ix}

Take any s ∈ Ix, we want to show that s ∈ I. Take the meet s ∧ x, expanding both sides of the equality
above by distributivity. Then we get

∨{t ∧ s | t ∈ I} = ∨{y ∧ s | y ∈ Ix}

In the RHS, every y ∧ s ≤ s, and since s ∈ Ix there is also a term s ∧ s = s, so the RHS is equal to s,
and thus the LHS is equal to s. Since s ∈ Ix, s is join-irreducible, which means that at least one of the
elements of the set {t ∧ s | t ∈ I} must be equal to s. But s ∧ t = s implies s ≤ t, and since I is an order
ideal, s ≤ t ∈ I implies s ∈ I.

Example. Let λ be a Young diagram. Define a lattice Yλ consisting of all Young diagrams that fit
inside λ (with the order inherited from Y). The Yλ is a distributive lattice (check this!). Join-irreducible
elements of Yλ are Young diagrams with precisely one corner, i.e. rectangles. Define Pλ as a poset on
boxes of λ, with (i, j) ≤ (k, l) if i ≤ k and j ≤ l. Then J(Pλ) = Yλ (check this!).
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4.5 Linear extensions of posets

Let P be a finite poset, |P | = n.

Definition 4.29. A linear extension of a poset P is a bijective map f : P → [n] such that x ≤P y implies
f(x) ≤ f(y). Denote by ext (P ) the number of linear extensions of P .

Example. Let P = Pλ, where λ = (2, 2) ` 4. Then linear extensions can be identified with SYT of shape
λ. In particular, ext (P ) = 2.

Lemma 4.30. Let P be a finite poset, and let J(P ) be its poset of order ideals. Then ext (P ) is equal to
the number of maximal saturated chains in J(P ).

Corollary 4.31. The number of SYT of shape λ, fλ, is equal to the number of saturated chains from ∅
to λ in Yλ.

Proof of Lemma 4.30. We want to construct a bijection between extensions of P and maximal saturated
chains in J(P ). Let ϕ : P → [n] be an extension, j ∈ [n]. Define an order ideal Ij = ϕ−1([j]), then we get
a saturated chain ∅ <· I1 <· . . . <· In = λ.

Exercise. Show that ϕ is a bijection.

5 Robinson-Schensted correspondence

5.1 Algorithm

Let λ = (λ1, . . . , λl) ` n be an integer partition. Recall that fλ is the number of standard Young tableaux
(SYT) of shape λ, which is also equal to the number of saturated chains in the Young lattice Y from ∅ to
λ.

Theorem 5.1. ∑
λ`n

(fλ)2 = n!

Example 5.2. For n = 3, there are precisely three Young diagrams. Two of these correspond to a unique
SYT, and the other has two SYT. Then 12 + 22 + 12 = 6 = 3!.

Remark (can be ignored by those not taking Representation Theory). Theorem 5.1 can be interpreted
as a fact from the representation theory of symmetric groups. Irreducible representations of Sn are
parametrized by integer partitions of n, i.e. by Young diagrams. Then fλ is precisely the dimension of
the irreducible representation Vλ, n! is the order of Sn, and thus the theorem says that sum of squares of
dimensions of irreducible representations is equal to the order of the group (which is true for any finite
group and can be proved by considering regular representation).

We will prove Thm 5.1 combinatorially by constructing a bijection between permutations in Sn and
pairs (P,Q) os SYT of the same shape λ ` n.

The algorithm is due to Robinson–Schensted, with a generalization due to Knuth, and is usually
referred as RSK (Robinson–Schensted–Knuth).

Given w = w1w2 . . . wn ∈ Sn, we will construct an insertion tableau P and a recording tableau Q of
the same shape step by step.
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Example 5.3. Let w = 3 2 6 1 5 7 4 ∈ S7. In the beginning, P = ∅ and Q = ∅. We start adding wi in
turn. First, let us consider how P is changing. Every new wi is inserted in the first row.

· At the first step, 3 is inserted in the box (1, 1).

· At the second step, 2 is inserted. It cannot be inserted in the box (1, 2) as 2 > 3, so it is inserted
in the box (1, 1) and thus pushes down 3 into a new box (2, 1).

· At the third step, 6 is inserted in the box (1, 2).

· At the fourth step, 1 is inserted in the box (1, 1), and thus pushes down 2 into the second row. 2,
in its turn, pushes down 3 to the third row into a new box (3, 1).

· At the fifth step, 5 is inserted in the box (1, 2), and thus pushes down 6 into the second row, where
6 forms a new box (2, 2).

· At the sixth step, 7 is inserted in the box (1, 3).

· At the last step, 4 is inserted in the box (1, 2), and thus pushes down 5 into the second row. 5, in
its turn, pushes down 6 to the third row into a new box (3, 2).

As a result, we get the following SYT of shape λ = (3, 2, 2):

P =

3

2

1

6

5

4 7

Now, Q records the number of the step each box of P was introduced for the first time. For example,
the box (1, 3) was introduced at the sixth step, so there will be 6 in it, and the box (3, 1) has shown up
at the fourth step, so there will be 4 there. As a result, we have

Q =

4

2

1

7

5

3 6

Let us formalize the procedure. The step (inserting wi to the tableau Pi−1 obtained after inserting
wi−1) consists of the following:

· if wi is greater than all entries in the first row of Pi−1 then wi is added to the end of the first row;

· otherwise, take the minimal wj in the first row which is greater than wi, substitute wj with wi, and
insert wj in the tableau obtained by removing the first row from Pi−1; i.e., if wj is greater than all
entries in the second row of Pi−1, then wj is added to the end of the second row; otherwise, find the
minimal wk in the second row which is greater than wj , substitute wk with wj , and push wk into
the third row, etc.

Example. Show that P and Q are SYT.

Both P and Q are SYT of the same shape λ, which is called the Schensted shape of w.
To verify that the procedure works, we need to check that the map w 7→ (P,Q) is injective and

surjective. For this, we can construct the inverse map.
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Example 5.4. Let us take P = P7 and Q = Q7 we got in Example 5.3, and try to reconstruct w ∈ S7.
According to Q, the last box to appear was (3, 2) (with 6 in it). It is in row 3, so 6 was pushed down by
some element from row 2. The maximal number in row 2 which is less than 6 is 5, which implies that 6
was pushed down by 5, and 5 was pushed down to row 2 by someone from the first row. The maximal
number in the first row which is less than 5 is 4, which implies that 5 was pushed down by 4, and thus 4
is precisely the number inserted at the last step.

Therefore, we have found w7 = 4 and reconstructed P6 (and, obviously, Q6), where

P6 =

3

2

1

6

5 7

Q6 =

4

2

1

5

3 6

We now repeat this procedure for the box (1, 3) of (P6, Q6) which, according to Q6, is the last one to
appear, etc. After seven steps we will reconstruct the permutation w.

5.2 Properties of RSK

We will now look at some corollaries of the algorithm, as well as at some ot its properties.

Theorem 5.5. Let λ be the Schensted shape of w ∈ Sn, and let (P,Q) be the corresponding SYT. Then

(1) λ1 is the maximal size of an increasing subsequence in w;

(2) λ′1(= the number of rows in λ) is the maximal size of a decreasing subsequence in w.

Remark. Theorem 5.5 immediately implies Erdos-Szekeres Theorem.

Remark. The Schensted shape of w ∈ Sn is precisely the Young diagram λ constructed by the poset
Pw in the Greene’s Theorem. See Appendix 1 (written by Sergey Fomin) to Stanley’s “Enumerative
Combinatorics, vol. II”.

Exercise 5.6. Denore by rx(P ) an insertion of x in a partial tableau P in the RSK algorithm. Suppose
that during rx(P ) the elements x1, . . . , xk are pushed down from rows 1, 2, . . . , k and columns j1, j2, . . . , jk
respectively. Then

(a) x < x1 < · · · < xk;

(b) j1 ≥ · · · ≥ jk;

(c) if P ′ = rx(P ), then P ′i,j ≤ Pi,j for all i, j.

Statement (1) of Theorem 5.5 immediately follows from the following lemma.

Lemma 5.7. Let w = w1w2 . . . wn ∈ Sn, denote by Pk a partial tableau obtained after insertion of
w1, . . . , wk. Let wk enter Pk−1 in column j. Then the longest increasing subsequence ending in wk has
length j.

Proof. We use induction on k. The base (k = 1) is obvious.
Let us first prove the existence of an increasing subsequence of length j ending in wk. Let wi be the

element of Pk−1 in the box (1, j − 1). Since wk is inserted in the box (1, j), wi < wk. By induction, there
exists an increasing subsequence ending in wi of length j − 1. By adding wk, we obtain an increasing
subsequence ending in wk of length j.
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No, let us prove the maximality. Suppose there exists an increasing subsequence ending in wk of length
greater than j. Take this subsequence, and let wi be the element preceding wk, i < k. By the induction
assumption, wi is inserted in box (1,m), m ≥ j (as there exists an increasing subsequence ending in wi
of length at least j). Therefore, for the element wp in the box (1, j) of Pi we have wp ≤ wi < wk. Let wq
be the element in the box (1, j) of Pk−1. By Exercise 5.6(c), wq ≤ wp (as k − 1 ≥ i), and thus wq < wk.
However, during the insertion of wk it pushes down wq, which implies that wk < wq, so we came to a
contradiction.

We are left to prove statement (2) of the theorem.
Recall that we denote by rx(P ) a step of the RSK algorithm consisting of inserting x in a partial

tableau P . Define cx(P ) as a (purely formal) row insertion of x into P . This can be understood as
transposing P , then doing rx(P t), and then transposing the result again (here by the transpose P t of P
we mean the reflection of P with respect to the main diagonal).

Lemma 5.8. Let P be a partial tableau, x, y /∈ P . Then cyrx(P ) = rxcy(P ).

Proof. The proof is case-by-case, we will consider some and leave others as an exercise.
Assume first that y > x and y is greater than all elements of P . Then cy places y at the end of the

first column, and thus rxcy(P ) is just rx(P ) with additional y attached to the bottom of the first column.
It is clear that cyrx(P ) does precisely the same.

If we assume that x is the maximal element, then the same proof works (just need to tranpose the
whole picture).

Exercise. Complete the proof of the lemma.

Lemma 5.9. Let w = w1w2 . . . wn ∈ Sn, and let P be the insertion tableau of w. Define wr =
wnwn−1 . . . w2w1. Then the insertion tableau of wr is P t.

Proof. We can write P = P (w) = rwnrwn−1 . . . rw2rw1(∅).
Following this, and by using Lemma 5.8, we have

P (wr) = rw1rw2 . . . rwn(∅) = rw1rw2 . . . rwn−1cwn(∅) = cwnrw1rw2 . . . rwn−1(∅)

We can now continue, with

P (wr) = cwnrw1rw2 . . . rwn−1(∅) = cwnrw1rw2 . . . cwn−1(∅) = cwncwn−1rw1rw2 . . . rwn−2(∅)

Applying this transformation n times, we get

P (wr) = rw1rw2 . . . rwn(∅) = cwncwn−1 . . . cw2cw1(∅) = P t

as required.

We can now complete the proof of Theorem 5.5(2).
Consider wr, its increasing subsequences are precisely decreasing subsequences of w. Therefore, the

maximal length of a decreasing subsequence of w is equal to the maximal length of an increasing subse-
quence of wr, which, by (1), is equal to (λ′)1, where λ′ is the Schensted shape of wr. By Lemma 5.9, λ′

is conjugate to λ, so (λ)′1 is precisely the size of the first column of λ.

We will now explore more symmetries of RSK.
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Example 5.10. Recall from Example 5.3 that for w = 3 2 6 1 5 7 4 ∈ S7 we have

P =

3

2

1

6

5

4 7

Q =

4

2

1

7

5

3 6

Let now take the insertion tableau P ′ = Q and the recording tableau Q′ = P , which permutation
does this pair correspond to? An application of the RSK algorithm leads to w′ = 4 2 1 7 5 3 6 ∈ S7. Now,
observe that w = (1 3 6 7 4)(2)(5) and w′ = (1 4 7 6 3)(2)(5), so w′ = w−1.

Theorem 5.11. Let the application of the RSK takes w to (P,Q). Then w−1 is taken to (Q,P ).

Recall that, given w ∈ Sn, one can define a poset Pw on [n] with order wi <Pw wj if wi < wj and i < j.
Then chains of Pw are increasing subsequences of w, and antichains are decreasing subsequences of w.

Denote by P1 the set of minimal elements of Pw, by P2 the set of minimal elements of Pw \ P1, and
then by Pi the set of minimal elements of Pw \ ∪

j<i
Pj . Note that every Pi is an antichain of Pw.

Example. Let w = 3 2 6 1 5 7 4 ∈ S7, we have already seen that the Hasse diagram of Pw is

132

456
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Then P1 = {1, 2, 3}, P2 = {4, 5, 6}, and P3 = {7} (cf columns of the the insertion tableau).

Write w in 2-line notation: w =
1 2 3 4 5 6 7

3 2 6 1 5 7 4
. Then we can interpret elements of Pw as

i

wi
. In particu-

lar, we can write every Pi ordering its elements by the top number:

P1 =

{
1

3
,
2

2
,
4

1

}
=

{
u11
w11

,
u12
w12

,
u13
w13

}
P2 =

{
3

6
,
5

5
,
7

4

}
=

{
u21
w21

,
u22
w22

,
u23
w23

}
P3 =

{
6

7

}
=

{
u31
w31

}
where

uij
wij

denotes j-th element of Pi.

Note that the first row of the insertion tableau P is 1 4 7 = w13w23w31, and the first row of the
recording tableau Q is 1 3 6 = u11 u21 u31.

Remark. In general, if Pj =

{
uj1
wj1

,
uj2
wj2

, . . . ,
ujnj

wjnj

}
(where we always assume that uj1 < uj2 < · · · <

ujnj ), then wj1 > wj2 > · · · > wjnj as all these elements compose an antichain of Pw.
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Remark. While applying RSK to a permutation w =
1

w1

2

w2

. . .

. . .

n

wn
we insert the elements of the second

row into tableau P and the elements of the first row into tableau Q. Note that the algorithm is completely
defined by the relations wi < wj for every pair (i, j). Thus, if we substitute the first row by any increasing
sequence, and the second row by any n distinct numbers with the same relations, then we will get tableaux
P ′ and Q′ of the same shape as of P and Q (these are not SYT anymore, although the numbers will still
be increasing to the right and to the bottom). Moreover, we can apply RSK to any two-row array of
numbers (such that numbers in every row are distinct): sort the columns so that the top row is increasing,
and then apply the procedure described above. We will use this modification of RSK to complete the
proof of the theorem.

Lemma 5.12. The first row of the insertion tableau P is w1n1 w2n2 w3n3 . . . , and the first row of the
recording tableau Q is u11 u21 u31 . . . . In other words, the first rows of P and Q consist of minimal w and
u from every Pj.

Proof. Let w = w1w2 . . . wn ∈ Sn, we use induction on n. If n = 1 then the statement is trivial.
Denote w̃ = w1w2 . . . wn−1, and let P̃ and Q̃ be the corresponding insertion and recording tableaux

(see the remark above: here the first row of w̃ is still [n − 1], but the second row may miss any one

element of [n]). Let P̃j be the corresponding antichains of Pw̃, P̃j =

{
ũj1
w̃j1

,
ũj2
w̃j2

, . . . ,
ũjmj

w̃jmj

}
, where

j = 1, . . . , l. By the induction assumption, the first row of P̃ is w̃1m1 w̃2m2 . . . w̃lml
, and the first row of

Q̃ is ũ11 ũ21 . . . ũl1.
Insert wn in P̃ . If wn > w̃jmj for all j, then we insert wn in the (l + 1)-st column. At the same time,

this means that
n

wn
cannot be added to any of l antichains Pj , so it forms a new antichain Pl+1 in Pw,

and thus we can write
n

wn
=
ul+11

wl+11
=
ul+1ml+1

wl+1ml+1

, so the first row of P is is w1m1 w2m2 . . . wlml
wl+1ml+1

,

and the first row of Q is u11 u21 . . . ul1, ul+11, as desired.

Assume now that wn < w̃jmj for some j. Then P̃j ∪
{
n

wn

}
is an antichain of Pw (note that there

may be many such j). One can easily see that
n

wn
belongs to Pj with minimal j amongst those with

wn < w̃jmj . For example, if wn < w̃1m1 , then
n

wn
is incomparable with all minimal elements of Pw,

and thus it is a minimal element itself. Therefore, the element
n

wn
is inserted in column j if and only if

n

wn
=
ujmj

wjmj

, so again the first row of P is of the form required in the lemma. Since we do not start the

new column, Q stays intact, so it also has the required form.

Exercise 5.13. The poset Pw is isomorphic to the poset Pw−1 , with the isomorphism given by
i

wi
7→ wi

i
.

Proof of Theorem 5.11. Let the insertion and recording tableaux of w−1 be P ′ and Q′. Denote by P ′j the

corresponding antichains of the poset Pw−1 . According to Exercise 5.13, P ′j =

{
wj1
uj1

,
wj2
uj2

, . . . ,
wjnj

ujnj

}
, so

the minimal elements in the second row are uj1, and the minimal elements in the first row are wjnj . Accord-
ing to Lemma 5.12, the first row of P ′ is now u11 u21 u31 . . . , and the first row of Q′ is w1n1 w2n2 w3n3 . . . ,
which are precisely first rows of Q and P respectively.

Now the plan is the following: denote by P̄ and Q̄ the tableaux P and Q with their first rows removed,
and find a two-rows array w̄ (i.e. a “permutation”) which results in (P̄ , Q̄) under RSK. We already know
the set of elements in both rows, the question is how to match them.
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Consider two elements
ujq
wjq

, q < mj , and
urs
wrs

, s < mr, then both wjq and wrs are in P̄ . Thus, there

are two elements which pushed these two down.

Exercise.
ujq
wjq

is pushed down from the first row of P by
uj q+1

wj q+1
.

Therefore, wjq enters P̄ before wrs if and only if uj q+1 < ur s+1. This implies that the following array
w̄ is taken to (P̄ , Q̄) (check this!):

w̄ =
u12
w11

. . .

. . .

u1m1

w1m1−1

u22
w21

. . .

. . .

u2m2

w2m2−1

. . .

. . .

ul2
wl1

. . .

. . .

ulml

wl ml−1

for some l, where the columns should be permuted for the first row to be increasing.
Now, performing a similar exercise for w−1, we see that

w−1 =
w1m1−1
u1m1

. . .

. . .

w11

u12

w2m2−1
u2m2

. . .

. . .

w21

u22

. . .

. . .

wl ml−1
ulml

. . .

. . .

wl1
ul2

.

Observe that w−1 = (w̄)−1, and thus, by the induction assumption, P̄ ′ = Q̄ and Q̄′ = P̄ . As we have
already proved that the first rows also coincide, this implies that P ′ = Q and Q′ = P .

6 Games on graphs

Let G = (V,E) be a graph with the set of vertices V (where |V | = n and the vertices are identified with
elements of [n]), and the set of edges E, where E ⊂ V × V (we remove the diagonal from V × V and
identify (i, j) with (j, i)).

Denote by N(i) the set of neighbors of i, i.e. vertices connected to i by an edge. A configuration is is
a non-negative integer vector c = (c1, . . . , cn) – this can be understood as we put ci chips in a vertex i.

6.1 Reflection game

We call a vertex i unstable if 2ci <
∑

j∈N(i)

cj , and stable otherwise.

The initial configuration is a vector with all cj = 0 axcept for a single ci = 1.
A move consists of choosing any unstable vertex i and changing the configuration as follows: ci 7→

−ci +
∑

j∈N(i)

cj , while all other cj stay intact. The goal of the game is to make every vertex stable.

Example. For G being a path with three vertices, there are three possible initial configurations, they all
lead to a final configuration (1, 1, 1).

We can ask several questions:

• For which graphs the game can stop?

• For which graphs the game stops for any sequence of moves?

• What are possible final configurations?

Example. For G being a cycle of length three, the game never stops.

Exercise. • A subgraph of G = (V,E) consists of a subset V ′ of V and all edges from E joining
elements of V ′. Show that if the game never stops on some subgraph of G, then it never stops on
G.
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• Show that if G has a cycle, then the game never stops.

• The valence of a vertex of G is the number of edges incident to it. Show that if G has a vertex of
valence at least four, then the game never stops.

• Show that if G has at least two vertices of valence three, then the game never stops.

• Let G be a tree with a unique vertex v0 of valence three. Denote the lengths of the “legs” (including
v0) by p, q, r, see Fig. 6.1. Show that if 1

p + 1
q + 1

r ≤ 1 then the game never stops.

p q

r

Figure 6.1: Tree with precisely one vertex of valence at least three

The remaining graphs are shown in Fig. 6.2.

Exercise. Show that for the graphs in Fig. 6.2 any sequence of moves terminates, and the final configu-
ration is always the same (such graphs are called graphs of finite type).

An

Dn

E6

E7

E8

Figure 6.2: Graphs of finite type

6.2 Cartan firing

We now call a vertex i unstable if ci > 1, and stable otherwise.
We can start with any initial configuration.
A move consists of choosing any unstable vertex i and changing the configuration as follows: ci 7→ ci−2,

cj 7→ cj +1 if j ∈ N(i), and cj stays intact otherwise. The goal of the game is to make every vertex stable.

Example. For G being a path with three vertices and the initial configuration (2, 3, 2), there is a sequence
of moves which terminates.

Given a graph G, define its Cartan matrix AG = (aij) as follows: aii = 2, aij = −1 if i ∈ N(j), and
aij = 0 otherwise. Then the move at vertex i can be understood as c 7→ c−Ai, where Ai is the i-th row
of AG.
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Theorem 6.1. Let G be a graph, and let A = AG be its Cartan matrix. Then the following are equivalent:

(1) For any initial configuration and any sequence of moves the game stops.

(2) There exists a positive vector v = (v1, . . . , vn), vi > 0, such that Av has also all coordinates positive.

(3) A is positive definite.
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