ESM 2B, Homework 1

Due Date: 14:00 Wednesday, 18 February 2009.

Explain your answers! Problems marked (\star) are bonus ones.

- **1.1.** Are the following sets of vectors linearly independent?
 - (a) $\{(1,-1,0), (-1,0,1), (0,1,-1)\}\subset \mathbb{R}^3$;
 - (b) $\{(1,1,0), (1,0,1), (0,1,1)\} \subset \mathbb{R}^3$;
 - (c) $\{x^3+x^2, x^2-3x+1, x^3-2x^2+1\} \subset \mathbb{R}[x]$, where $\mathbb{R}[x]$ is the space of polynomials with \mathbb{R} -coefficients.
- **1.2.** What is the dimension of span $\{(1,2,1), (3,2,1), (-1,6,3)\}\subset \mathbb{R}^3$?
- **1.3.** Find all values of a and b, such that $\{(1,b),(a,a)\}$ is a linearly dependent subset of \mathbb{C}^2 .
- **1.4.** Which of the following sets are \mathbb{R} -vector spaces?
 - (a) Polynomials with real coefficients of degree at least n;
 - (b) continuous functions f(x) on \mathbb{R} with f(0) = 0;
 - (c) continuous functions f(x) on \mathbb{R} with f(0) = 1;
 - (d) bounded functions on \mathbb{R} ;
 - (e) arithmetic progressions with real entries;
 - (f) geometric progressions with real entries;
 - (*) the set of functions $\{f(x) = a\sin(x+c) \mid a, c \in \mathbb{R}\}.$
- **1.5.** Which of the following maps $V \times V \to \mathbb{F}$ are inner products?
 - (a) $\mathbb{F} = \mathbb{C}$, $V = \mathbb{C}^2$, $(w, z) = w_1 \overline{z_2} w_2 \overline{z_1}$;
 - (b) $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^3$, $(x, y) = 2x_1y_2 2x_2y_1 + 3x_3y_3$.
- **1.6.** Which of the following maps from \mathbb{R}^2 to \mathbb{R}^2 are linear operators?
 - (a) f(x,y) = (x + y, xy);
 - (b) g(x,y) = (x y; 2y);
 - (c) h(x,y) = (2x + y + 1; y + x).
- **1.7.** Which of the following maps are linear operators?
 - (a) $A: \mathbb{R}^4 \to \mathbb{R}^3$, A(x, y, z, t) = (x + y, y + z, z + t);
 - (\star) $A: \mathbb{R}[x] \to \mathbb{R}[x], (Ap)(x) = p(\alpha x^2 + \beta), \text{ where } \alpha, \beta \in \mathbb{R} \text{ are fixed numbers.}$