ESM 2B, Homework 10

Due Date: 14:00 Wednesday, May 6.
$\underline{\text { Explain your answers! Problems marked (} \star \text {) are bonus ones. }}$
10.1. In how many ways can 8 people be placed around a table if there are three who insist on sitting together?
10.2. A royal family has children until it has a boy or until it has three children, whichever comes first. Assume that each child is a boy with probability $\frac{1}{2}$. Find the expected number of boys in this family and the expected number of girls.
10.3. A bag contains 3 white and 2 red balls. 3 balls are drawn simultaneously at random from the bag. Let X be the number of white balls drawn.
(a) Write down the probability function of X.
(b) Compute expectation and variance of X.
10.4. Let X_{1}, X_{2}, \ldots be independent discrete random variables taking values in $\left\{-\frac{1}{2}, \frac{1}{2}\right\}$ with probability function

$$
p\left(-\frac{1}{2}\right)=q, \quad p\left(\frac{1}{2}\right)=(1-q)
$$

and $p(x)=0$ for all other values of x.
(a) Find the expectation for the random variable

$$
Z_{N}=\frac{X_{1}+\cdots+X_{N}}{N}
$$

as $N \rightarrow \infty$.
(b) Let $Y_{n}=2^{-n} X_{n}$. Find the expectation for the random variable

$$
Z_{N}=Y_{1}+\cdots+Y_{N}
$$

as $N \rightarrow \infty$.
10.5. (\star) A lighthouse is situated at a distance L from a straight coastline, opposite to a point O, and sends out a narrow continuous beam of light simultaneously in opposite directions. The beam rotates with a constant angular velocity. If the random variable Y is the distance along the coastline, measured from O, of the spot that the light beam illuminates, find its probability density function.

