ESM 2B, Homework 11

Due Date: 14:00 Wednesday, May 13.
$\underline{\text { Explain your answers! Problems marked (} \star \text {) are bonus ones. }}$
11.1. Prove the following identities:
(a) $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$;
(b) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$;
$(\mathrm{c})(\star) \sum_{i=k}^{n}\binom{i}{k}=\binom{n+1}{k+1} ;$
11.2. A boy is selected at random from among the children belonging to families with n children. What is the probability that the boy has $k-1$ brothers?
11.3. Suppose we have a box with 10 balls, 6 of which are black and 4 are white. Find the probability of drawing 2 white balls from the box if:
(a) the first ball is returned into the box before the second ball is drawn;
(b) the first ball is put aside after being drawn.
11.4. Suppose one in 151 people has a certain disease. There is a test for this disease that is completely reliable in detecting the disease but gives a false positive result on 1% of the noninfected population. Given that somebody is tested positively, what is the probability that this person indeed has the disease?
Hint: Consider events $A=\{$ Test is positive $\}$ and $B=\{$ Person is infected $\}$, and then use Bayes' rule.
11.5. Assume Peter leaves his office every day at a random time, goes to the bus stop, from where every 10 minutes leaves a bus.
(a) Determine the expected waiting time.
(b) After four days, Peter observed that he never waited longer than 8 minutes. What is the probability of this event?
(c) What is the probability that Peter waited at least one time longer than 8 minutes in 4 days?
11.6. The moment generating function of a certain random variable X is

$$
M_{X}(t)=\frac{c}{c-t}
$$

where $c>0$ is a parameter. Determine the expectation and variance of X.
11.7. Suppose a random number generator produces uniformly distributed numbers X in the interval $[0,4]$, and another random number generator produces uniformly distributed numbers Y in the interval $[2,5]$. What is the probability that $X+Y \geq 3$?
11.8. (\star) Let X and Y be independent random variables that take non-negative real values and whose associated density functions are $f_{X}(t)=\lambda e^{-\lambda t}, f_{Y}(t)=\mu e^{-\mu t}$ for $t>0$, and $f_{X}(t)=f_{Y}(t)=0$ for $t<0$. Compute the probability $P(a<X+Y<b)$ for real $a<b$.

