School of Engineering and Science

ESM 2B, Homework 3

Due Date: 14:00 Wednesday, March 4.

Explain your answers! Problems marked $(*)$ are bonus ones.
3.1. Find all the solutions x of the following linear systems
(a) $\left\{\begin{aligned} x_{1}+x_{2}+2 x_{3} & =1 \\ 2 x_{1}-x_{2} & =3 \\ 2 x_{1}+x_{3} & =2\end{aligned}\right.$
(b) $\left\{\begin{aligned} x_{1} & -x_{2}+2 x_{3}= \\ & =2 x_{2}-x_{3}= \\ 3 x_{1} & =2 x_{2}+5 x_{3}=\end{aligned}\right.$
(c) $\left\{\begin{aligned} 2 x_{1}-x_{2}+x_{3} & =3 \\ -x_{1}+2 x_{2}-x_{3} & =0 \\ x_{1}+x_{2} & =2\end{aligned}\right.$
(d) $\left\{\begin{aligned} 2 x_{1}-x_{2}+x_{3} & =5 \\ -x_{1}+2 x_{2}-x_{3} & = \\ x_{1}+x_{2} & =1\end{aligned}\right.$
by identifying the coefficient matrix A, and then using Gauss elimination.
3.2. Compute the rank of the following matrices
(a) $\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 6 & 1 \\ 4 & 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}0 & 1 & 1 \\ 3 & 2 & 3 \\ 2 & 1 & 2\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 3 & 2 & 1 & 1 \\ 4 & 0 & 2 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 0 & 1 & 1 \\ 3 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$
3.3. Are the following matrices invertible? If yes, compute the inverses.
(a) $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 2 & 1 \\ 4 & 0 & 2\end{array}\right)$
(d) $\left(\begin{array}{cccc}2 & 1 & 3 & 0 \\ 0 & 1 & -2 & 1 \\ 3 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$
3.4. Compute determinants of the following matrices:
(a) $\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 1 & 1 \\ 3 & 2 & -3 \\ -2 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 0 & 2\end{array}\right)\left(\begin{array}{ccc}2 & 0 & 3 \\ 0 & 1 & 1 \\ 3 & 0 & -1\end{array}\right)$
3.5. (a) Show that if A is an invertible matrix, then A^{n} is also invertible for any positive integer n.
(b) Is it true that if A^{n} is invertible for some positive integer n then A is invertible?
(\star Let A, B be matrices, and suppose that $A B=I$. Is it true that $B A=I$?
3.6. (\star) Let $A, B \in M_{n}$, and let $A B+I$ be invertible. Show that $B A+I$ is also invertible.

