ESM 2B, Homework 4

Due Date: 14:00 Wednesday, March 11.

Explain your answers! Problems marked (\star) are bonus ones.

4.1. Compute the characteristic polynomial and find the eigenvalues (with multiplicities), eigenvectors, and bases of eigenspaces for the following matrices. Which of them are diagonalizable?

$$(a) \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} 0 & 2 & 1 \\ -1 & 4 & 0 \\ -1 & 1 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
$$(d) \begin{pmatrix} 0 & 1 & 1 \\ -4 & -4 & 0 \\ 0 & 1 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} -4 & 3 & -3 \\ 2 & -2 & 2 \\ 8 & -7 & 7 \end{pmatrix}$$

- 4.2. Show that
 - (a) the product of eigenvalues of A equals det (A);
 - (\star) the sum of eigenvalues of A equals tr (A).
- **4.3.** Decide which of the following matrices are diagonalizable. If so, find a diagonal matrix D and an invertible matrix S such that $A = SDS^{-1}$.

(a)
$$A = \begin{pmatrix} 5 & 3 \\ 1 & 0 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 0 & 0 \\ 4 & 0 \end{pmatrix}$ (c) $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (d) $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ -2 & 0 & 2 \end{pmatrix}$

4.4. (*) Let $A, B \in M_n$, and let AB = BA. Suppose also that $Av = \lambda v$ for some $v \neq 0$ (i.e., v is an eigenvector of A with eigenvalue λ), and dim $E_{\lambda} = 1$. Show that v is an eigenvector of B.