ESM 2B, Homework 4

Due Date: 14:00 Wednesday, March 11.

Explain your answers! Problems marked $(*)$ are bonus ones.
4.1. Compute the characteristic polynomial and find the eigenvalues (with multiplicities), eigenvectors, and bases of eigenspaces for the following matrices. Which of them are diagonalizable?
(a) $\left(\begin{array}{cc}3 & 1 \\ -1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 2 & 1 \\ -1 & 4 & 0 \\ -1 & 1 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{array}\right)$
(d) $\left(\begin{array}{ccc}0 & 1 & 1 \\ -4 & -4 & 0 \\ 0 & 1 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & 3 & -3 \\ 2 & -2 & 2 \\ 8 & -7 & 7\end{array}\right)$
4.2. Show that
(a) the product of eigenvalues of A equals $\operatorname{det}(\mathrm{A})$;
(\star) the sum of eigenvalues of A equals $\operatorname{tr}(\mathrm{A})$.
4.3. Decide which of the following matrices are diagonalizable. If so, find a diagonal matrix D and an invertible matrix S such that $A=S D S^{-1}$.
(a) $A=\left(\begin{array}{ll}5 & 3 \\ 1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{ll}0 & 0 \\ 4 & 0\end{array}\right)$
(c) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(d) $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 3 & 0 \\ -2 & 0 & 2\end{array}\right)$
4.4. (\star) Let $A, B \in M_{n}$, and let $A B=B A$. Suppose also that $A v=\lambda v$ for some $v \neq 0$ (i.e., v is an eigenvector of A with eigenvalue λ), and $\operatorname{dim} \mathrm{E}_{\lambda}=1$. Show that v is an eigenvector of B.

