Jacobs University School of Engineering and Science

ESM 2B, Homework 6

Due Date: 14:00 Wednesday, April 1.

Explain your answers! Problems marked (\star) are bonus ones.

- **6.1.** Consider the vector space $C^1[0,1]$ of differentiable functions on [0,1] with continuous derivative. Which of the following maps $\|\cdot\|: C^1[0,1] \to \mathbb{R}$ are norms?
 - (a) $||f|| = \sup_{x \in [0,1]} |f(x)|;$
 - (b) $||f|| = \sup_{x \in [0,1]} |f'(x)|;$
 - (c) $||f|| = \sup_{x \in [0,1]} |f(x) + f(1)|;$
 - (d) $||f|| = \sup_{x \in [0,1]} |f^2(x)|;$
 - (e) $||f|| = \sup_{x \in [0,1]} |f(x) + f'(x)|;$
 - (f) $||f|| = \sup_{x \in [0,1]} |f(0) + f'(1)|.$
- **6.2.** Let P_2 be the vector space of polynomials with real coefficients of degree less than or equal to 2. For any $p, q \in P_2$ consider the inner product

$$\langle p, q \rangle = \int_{0}^{1} p(x)q(x) dx$$

Apply the Gram-Schmidt procedure to the basis $\{1, x, x^2\}$ to obtain an orthonormal basis.

6.3. Consider the vector space of continuous real-valued functions on $[0, 2\pi]$ with inner product

$$\langle f, g \rangle = \int_{0}^{2\pi} f(x)g(x) dx$$

Show that any two distinct functions from the set $\{1, \cos nx, \sin nx \mid n \in \mathbb{N}\}$ are mutually orthogonal.

6.4. Show that any norm induced by inner product satisfies the parallelogramm identity

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

6.5. (*) Define the vector space ℓ^p as the space of all infinite sequences $\{x_n\}$ of real numbers such that the series $\sum_{n=1}^{\infty} |x_n|^p$ converges. For which p and k the inclusion $\ell^p \subset \ell^{p+k}$ holds?