Jacobs University School of Engineering and Science

ESM 2B, Homework 8

Due Date: 14:00 Wednesday, April 22.

Explain your answers! Problems marked (\star) are bonus ones.

8.1. Find the Fourier transform of the function $f(x) = \frac{1}{2\pi}e^{-x^2/2}$ (use the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$).

8.2. Let $\delta(x)$ be the delta function. Compute

(a)
$$\int_{-2}^{2} \delta(x)(2-x^{2}+e^{x}) dx;$$
 (b) $\int_{-2}^{2} \delta(x+1)(1+x^{3}-\cos^{3}(\pi x)) dx;$
(c) $\int_{-2}^{2} \delta(x-3)e^{-x^{2}}\sin x dx;$ (*) $\int_{-2\pi}^{2\pi} \delta(x^{2}-\pi^{2})\cos x dx.$

8.3. (\star) Consider the following equation

$$\frac{d^2u}{dx^2} - u(x) = f(x)$$

with respect to u. Show that the solution u(x) can be written as

$$u(x) = \frac{-1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi x} \hat{f}(\xi)}{1+\xi^2} d\xi$$

where $\hat{f}(\xi)$ is the Fourier transform of f(x).

8.4. Let f * g be a convolution of two functions. Show that

8.5. Compute Laplace transform of the following functions:

(a)
$$f(x) = x^n, n \in \mathbb{Z};$$

(b) $f(x) = \sin(\alpha x), \alpha \in \mathbb{R};$
(c) $f(x) = \cos(\alpha x), \alpha \in \mathbb{R};$
(d) $\delta(2x - x_0).$