Jacobs University School of Engineering and Science Pavel Tumarkin, Yauhen (Zhenya) Mikulich

Problem Set 3

Analysis II

Homework Problems

3.1. Find the following indefinite integrals:

(a)
$$\int \arcsin x \, dx$$
; (b) $\int \ln x \, dx$; (c) $\int \frac{dx}{a^2 - x^2}$; (d) $\int \frac{dx}{a^3 + x^3}$.

3.2. Find all the functions f(x) satisfying the following properties:

$$f'(x) = \frac{2x^3 + 7x}{(x^2 + 3)^3}, \qquad f(0) = -\frac{1}{3}$$

3.3. Compute the following Riemann integrals:

(a)
$$\int_{0}^{2} \frac{x^5}{\sqrt{x^2 + 1}} dx$$
; (b) $\int_{0}^{\pi/4} \tan^{2n} x dx$; (c) $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$.

3.4. Using Riemann integrals of appropriate functions, find the following limits:

(a)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right);$$

(b)
$$\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+n)};$$

$$(\star) \lim_{n \to \infty} \left(\sin \frac{n}{n^2 + 1^2} + \sin \frac{n}{n^2 + 2^2} + \dots + \sin \frac{n}{n^2 + n^2} \right).$$

3.5. Define Gamma function $\Gamma(x)$ in the following way:

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$

Show that

- (a) $\Gamma(x)$ is well-defined for all x > 0 (i.e., the integral converges for any x > 0);
- (b) $\Gamma(x+1) = x\Gamma(x)$;
- (c) $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$;

3.6. Which of the following integral converge $(\alpha > 0)$?

(a)
$$\int_{1}^{\infty} \sin x^{\alpha} dx$$
; (b) $\int_{1}^{\infty} e^{\sin x} \frac{\sin 3x}{x^{\alpha}} dx$; (*) $\int_{0}^{\infty} e^{\cos x} \frac{\sin (\sin x)}{x} dx$.

Due Date: Friday, March 6, at the beginning of class.