ESM 2B, Homework 1

Due Date: 14:00 Thursday, 18 February 2010.

Explain your answers! Problems marked ($*$) are bonus ones.
1.1. Are the following sets of vectors linearly independent?
(a) $\{(1,-1,0),(-2,0,2),(0,1,-1)\} \subset \mathbb{R}^{3}$;
(b) $\{(1,1,0),(1,0,1),(0,1,1)\} \subset \mathbb{R}^{3}$;
(c) $\left\{x^{3}+x^{2}, x^{2}+3 x+1, x^{3}-2 x^{2}+1\right\} \subset \mathbb{R}[x]$, where $\mathbb{R}[x]$ is the space of polynomials with \mathbb{R}-coefficients.
1.2. What is the dimension of $\operatorname{span}\{(2,3,2),(3,2,1),(-1,6,3)\} \subset \mathbb{R}^{3}$?
1.3. Find all values of a and b, such that $\{(a, 1),(b, b)\}$ is a linearly dependent subset of \mathbb{C}^{2}.
1.4. Show that for any vector space V and any $v \in V$ the product $1 \cdot v$ is equal to v.
1.5. Which of the following sets are \mathbb{R}-vector spaces?
(a) Polynomials with real coefficients of degree at least n;
(b) continuous functions $f(x)$ on \mathbb{R} with $f(0)=0$;
(c) continuous functions $f(x)$ on \mathbb{R} with $f(0)=1$;
(d) bounded functions on \mathbb{R};
(e) arithmetic progressions with real entries;
(f) geometric progressions with real entries;
(\star) the set of functions $\{f(x)=a \cos (x+c) \mid a, c \in \mathbb{R}\}$.
1.6. Which of the following maps $V \times V \rightarrow \mathbb{F}$ are inner products?
(a) $\mathbb{F}=\mathbb{C}, V=\mathbb{C}^{2},\langle w \mid z\rangle=\overline{w_{1}} z_{2}-\overline{w_{2}} z_{1} ;$
(b) $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{3},\langle x \mid y\rangle=x_{1} y_{2}-x_{2} y_{1}+3 x_{3} y_{3}$.
1.7. Which of the following maps from \mathbb{R}^{2} to \mathbb{R}^{2} are linear operators?
(a) $f(x, y)=(x y, x-y)$;
(b) $g(x, y)=(x-y, 2 x)$.
1.8. Which of the following maps are linear transformations?
(a) $\mathcal{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, \mathcal{A}(x, y, z, t)=(x+2 y, y+2 z, z+2 t)$;
$(\star) \mathcal{A}: \mathbb{R}[x] \rightarrow \mathbb{R}[x],(\mathcal{A} p)(x)=p\left(\alpha x^{2}+\beta\right)$, where $\alpha, \beta \in \mathbb{R}$ are fixed numbers.
1.9. Show that for every linear map $\mathcal{A}: V \rightarrow W$ the kernel $\operatorname{ker} \mathcal{A}$ and the image $\operatorname{im} \mathcal{A}$ are linear subspaces of V and W respectively.

