Jacobs University School of Engineering and Science

ESM 2B, Homework 1

Due Date: 14:00 Thursday, 18 February 2010.

Explain your answers! Problems marked (\star) are bonus ones.

- **1.1.** Are the following sets of vectors linearly independent?
 - (a) {(1, -1, 0), (-2, 0, 2), (0, 1, -1)} $\subset \mathbb{R}^3;$
 - (b) $\{(1,1,0), (1,0,1), (0,1,1)\} \subset \mathbb{R}^3;$

(c) $\{x^3 + x^2, x^2 + 3x + 1, x^3 - 2x^2 + 1\} \subset \mathbb{R}[x]$, where $\mathbb{R}[x]$ is the space of polynomials with \mathbb{R} -coefficients.

- **1.2.** What is the dimension of span $\{(2,3,2), (3,2,1), (-1,6,3)\} \subset \mathbb{R}^3$?
- **1.3.** Find all values of a and b, such that $\{(a, 1), (b, b)\}$ is a linearly dependent subset of \mathbb{C}^2 .
- **1.4.** Show that for any vector space V and any $v \in V$ the product $1 \cdot v$ is equal to v.
- **1.5.** Which of the following sets are \mathbb{R} -vector spaces?
 - (a) Polynomials with real coefficients of degree at least n;
 - (b) continuous functions f(x) on \mathbb{R} with f(0) = 0;
 - (c) continuous functions f(x) on \mathbb{R} with f(0) = 1;
 - (d) bounded functions on \mathbb{R} ;
 - (e) arithmetic progressions with real entries;
 - (f) geometric progressions with real entries;
 - (*) the set of functions $\{f(x) = a\cos(x+c) \mid a, c \in \mathbb{R}\}.$
- **1.6.** Which of the following maps $V \times V \to \mathbb{F}$ are inner products?

(a) $\mathbb{F} = \mathbb{C}, V = \mathbb{C}^2, \langle w | z \rangle = \overline{w_1} z_2 - \overline{w_2} z_1;$

- (b) $\mathbb{F} = \mathbb{R}, V = \mathbb{R}^3, \langle x | y \rangle = x_1 y_2 x_2 y_1 + 3 x_3 y_3.$
- **1.7.** Which of the following maps from \mathbb{R}^2 to \mathbb{R}^2 are linear operators?
 - (a) f(x,y) = (xy, x y);
 - (b) g(x, y) = (x y, 2x).
- **1.8.** Which of the following maps are linear transformations?

(a) $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^3$, $\mathcal{A}(x, y, z, t) = (x + 2y, y + 2z, z + 2t)$;

- (*) $\mathcal{A}: \mathbb{R}[x] \to \mathbb{R}[x], (\mathcal{A}p)(x) = p(\alpha x^2 + \beta)$, where $\alpha, \beta \in \mathbb{R}$ are fixed numbers.
- **1.9.** Show that for every linear map $\mathcal{A}: V \to W$ the kernel ker \mathcal{A} and the image im \mathcal{A} are linear subspaces of V and W respectively.