ESM 2B, Homework 11

Due Date: 17:00 Wednesday, May 12.

Explain your answers! Problems marked (\star) are bonus ones.
11.1. A bag contains 5 white and 3 red balls. 4 balls are drawn simultaneously at random from the bag. Let X be the number of white balls drawn.
(a) Write down the probability function of X.
(b) Compute expectation and variance of X.
11.2. Let X_{1}, X_{2}, \ldots be independent discrete random variables taking values in $\left\{-\frac{1}{2}, \frac{1}{2}\right\}$ with probability function

$$
p\left(-\frac{1}{2}\right)=q, \quad p\left(\frac{1}{2}\right)=(1-q)
$$

and $p(x)=0$ for all other values of x.
(a) Find the expectation for the random variable $Z_{N}=\frac{X_{1}+\cdots+X_{N}}{N}$ as $N \rightarrow \infty$.
(b) Let $Y_{n}=2^{-n} X_{n}$. Find the expectation for the random variable $Z_{N}=Y_{1}+\cdots+Y_{N}$ as $N \rightarrow \infty$.
11.3. Suppose one in 151 people has a certain disease. There is a test for this disease that is completely reliable in detecting the disease but gives a false positive result on 1% of the noninfected population. Given that somebody is tested positively, what is the probability that this person indeed has the disease?
Hint: Consider events $A=\{$ Test is positive $\}$ and $B=\{$ Person is infected $\}$, and then use Bayes' rule.
11.4. Assume Peter leaves his office every day at a random time, goes to the bus stop, from where every 8 minutes leaves a bus.
(a) Determine the expected waiting time.
(b) After four days, Peter observed that he never waited longer than 6 minutes. What is the probability of this event?
(c) What is the probability that Peter waited at least one time longer than 5 minutes in 4 days?
11.5. The moment generating function of a certain random variable X is $M_{X}(t)=\frac{c}{c-t}$, where $c>0$ is a parameter. Determine the expectation and variance of X.
11.6. Suppose a random number generator produces uniformly distributed numbers X in the interval $[0,3]$, and another random number generator produces uniformly distributed numbers Y in the interval $[1,5]$. What is the probability that $X+Y \geq 3$?
11.7. (\star) Let X and Y be independent random variables that take non-negative real values and whose associated density functions are $f_{X}(t)=\lambda e^{-\lambda t}, f_{Y}(t)=\mu e^{-\mu t}$ for $t>0$, and $f_{X}(t)=f_{Y}(t)=0$ for $t<0$. Compute the probability $P(a<X+Y<b)$ for real $a<b$.
11.8. (\star) A lighthouse is situated at a distance L from a straight coastline, opposite to a point O, and sends out a narrow continuous beam of light simultaneously in opposite directions. The beam rotates with a constant angular velocity. If the random variable Y is the distance along the coastline, measured from O, of the spot that the light beam illuminates, find its probability density function.

