School of Engineering and Science

ESM 2B, Homework 4

Due Date: 14:00 Thursday, March 11.
Explain your answers! Problems marked (\star) are bonus ones.
4.1. Compute the characteristic polynomial and find the eigenvalues (with multiplicities), eigenvectors, and bases of eigenspaces for the following matrices. Which of them are diagonalizable?
(a) $\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 1 & -1 \\ 2 & 4 & 1 \\ 1 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{array}\right)$
(d) $\left(\begin{array}{ccc}0 & 1 & 1 \\ -4 & -4 & 0 \\ 0 & 1 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -3 & 3 \\ -2 & 2 & -2 \\ -8 & 7 & -7\end{array}\right)$
4.2. Show that
(a) the product of eigenvalues of A equals $\operatorname{det} \mathrm{A}$;
(b) (\star) the sum of eigenvalues of A equals $\operatorname{tr} \mathrm{A}$.
4.3. Decide which of the following matrices are diagonalizable. If so, find a diagonal matrix D and an invertible matrix C such that $A=C D C^{-1}$.
(a) $A=\left(\begin{array}{ll}0 & 3 \\ 1 & 5\end{array}\right)$
(b) $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$
(c) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(d) $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 3 & 0 \\ -2 & 0 & 2\end{array}\right)$
4.4. Let x_{1}, \ldots, x_{n} be complex numbers.
(a) Compute the following determinant

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2}
\end{array}\right|
$$

$(\mathrm{b})(\star)$ Prove the following equality (Vandermonde determinant):

$$
\left|\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Hint: use Bezout Theorem: if a is a root of a polynomial $P(x)$, then $P(x)=(x-a) P_{1}(x)$ for some polynomial $P_{1}(x)$.
$(c)(\star)$ Show that eigenvectors of matrix $A \in \mathrm{Mat}_{n}$ with mutually distinct eigenvalues are linearly independent.

