School of Engineering and Science

ESM 2B, Homework 5

Due Date: 14:00 Monday, March 22.

Explain your answers! Problems marked (\star) are bonus ones.
5.1. Use the Gram-Schmidt procedure to
(a) construct an orthonormal set of vectors from

$$
v_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
3 \\
3 \\
1 \\
-3
\end{array}\right) \quad v_{4}=\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)
$$

(b) find an orthonormal basis for the subspace of \mathbb{R}^{3} spanned by

$$
v_{1}=\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right) \quad \text { and } \quad v_{2}=\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right)
$$

5.2. Let $A=\left(a_{i j}\right)$ be an orthogonal (or unitary) matrix. Show that $\left|a_{i j}\right| \leq 1$ for any i, j.
5.3. Find the Jordan normal form and the associated basis of the following matrices:
(a) $\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}4 & 1 \\ -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
($)\left(\begin{array}{cccc}3 & -1 & 1 & 7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4\end{array}\right)$
5.4. Compute

$$
\text { (a) }\left(\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right)^{15} \quad(b)\left(\begin{array}{cc}
-1 & -1 \\
4 & 3
\end{array}\right)^{20}
$$

5.5. (\star) Find eigenvalues, eigenvectors, generalized eigenspaces and Jordan normal form of the differentiation operator on the space of polynomials of degree at most n.

