Jacobs University School of Engineering and Science

ESM 2B, Homework 6

Due Date: 14:00 Thursday, April 8.

Explain your answers! Problems marked (\star) are bonus ones.

6.1. Consider the vector space $C^1[0,1]$ of differentiable functions on [0,1] with continuous derivative. Which of the following maps $\|\cdot\|: C^1[0,1] \to \mathbb{R}$ are norms?

(a)
$$||f|| = \sup_{x \in [0,1]} |f(x)|;$$

(b) $||f|| = \sup_{x \in [0,1]} |f'(x)|;$
(c) $||f|| = \sup_{x \in [0,1]} |f(x) - f(1)|;$
(d) $||f|| = \sup_{x \in [0,1]} |f^3(x)|;$
(e) $||f|| = \sup_{x \in [0,1]} |f(x) + f'(x)|;$
(f) $||f|| = \sup_{x \in [0,1]} |f(0) + f'(1)|.$

6.2. Let P_3 be the vector space of polynomials with real coefficients of degree less than or equal to 3. For any $p, q \in P_3$ consider the inner product

$$\langle p|q
angle = \int_{0}^{1} p(x)q(x) \, dx$$

Apply the Gram-Schmidt procedure to the basis $\{1, x, x^2, x^3\}$ to obtain an orthonormal basis.

6.3. Consider the vector space of continuous real-valued functions on $[0, 2\pi]$ with inner product

$$\langle f|g \rangle = \int_{0}^{2\pi} f(x)g(x) \, dx$$

Show that any two distinct functions from the set $\{1, \cos nx, \sin nx \mid n \in \mathbb{N}\}$ are mutually orthogonal.

6.4. (a) Show that any norm induced by inner product satisfies the *parallelogramm identity*

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}$$

(b) Give an example of two continuous functions f, g on [0, 1] for which

$$\|f + g\|_{\infty}^{2} + \|f - g\|_{\infty}^{2} \neq 2\|f\|_{\infty}^{2} + 2\|g\|_{\infty}^{2}$$

where $||f||_{\infty}$ is the norm defined in Problem 1(a).

6.5. (*) Define the vector space ℓ^p as the space of all infinite sequences $\{x_n\}$ of real numbers such that the series $\sum_{n=1}^{\infty} |x_n|^p$ converges. For which p and k the inclusion $\ell^p \subset \ell^{p+k}$ holds?