ESM 2B, Homework 7

Due Date: 14:00 Thursday, April 15.

Explain your answers! Problems marked (\star) are bonus ones.
7.1. Write down Fourier series for the following functions from $L^{2}([-\pi, \pi])$.
(a) $f(x)=|x|$;
(b) $f(x)=\sin ^{2}(2 x)$;
(c) $f(x)=\cos ^{2}(x)$;
(d) $f(x)=\sin ^{2}(x)-x$.
7.2. Write down Fourier series for the following functions from $L^{2}([0, \pi])$.
(a) $f(x)=x$;
(a) $f(x)=x^{2}$.
7.3. Find the Fourier series of the function $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{cl}
1 & \text { if }-\pi \leq x<0 \\
-2 & \text { if } 0 \leq x<\pi
\end{array}\right.
$$

and having period 2π. Does the Fourier series converge at $x=0$? If yes, what is the limit?
7.4. Let f be a real-valued 2π-periodic function with Fourier series

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

(a) Show that $c_{n}=\overline{c_{-n}}$.

Find (complex) Fourier coefficients for the following functions:
(b) $f\left(x-x_{0}\right)$ for some fixed x_{0};
(c) $f(-x)$;
(d) $f^{\prime}(2 x)$.
7.5. (\star) Compute Fourier series of function $f(x)=x(\pi-x)$ on $[0, \pi]$. Use the Fourier series to compute the sum of the series

$$
1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}
$$

