School of Engineering and Science

ESM 2B, Homework 8

Due Date: 14:00 Thursday, April 22.
Explain your answers! Problems marked (\star) are bonus ones.
8.1. Find the Fourier transform of the function $f(x)=e^{-\alpha x^{2}}$ (use the fact that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$).
8.2. Assuming the Fourier transform of a function $f(x)$ to be $\hat{f}(y)$, compute the Fourier transform of
(a) $g(x)=f(x-a), a \in \mathbb{R}$;
(b) $g(x)=f(x / a), a>0$.
8.3. Consider the following equation

$$
\frac{d^{2} u}{d x^{2}}-u(x)=f(x)
$$

with respect to u. Show that the solution $u(x)$ can be written as

$$
u(x)=\frac{-1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{i \xi x} \hat{f}(\xi)}{1+\xi^{2}} d \xi
$$

where $\hat{f}(\xi)$ is the Fourier transform of $f(x)$.
8.4. Let $f * g$ be a convolution of two functions. Show that
(a) $f * g=g * f$;
(b) $(f * g) * h=f *(g * h)$;
(c) $f *(g+h)=f * g+f * h$.
(d) Is it true that $(f * g) h=f *(g h)$?
8.5. Let $\delta(x)$ be the δ-function. Compute
(a) $\int_{-2}^{2} \delta(x)\left(2-2 x^{2}+e^{x}\right) d x$;
(b) $\int_{-2}^{2} \delta(x+1)\left(1+2 x^{3}-\cos ^{3}(\pi x)\right) d x ;$
(c) $\int_{-2}^{2} \delta(x-3) e^{-2 x^{2}} \cos x d x$;
$(\mathrm{d})(\star) \int_{-2 \pi}^{2 \pi} \delta\left(x^{2}-\pi^{2}\right) \cos x d x$.
8.6. (\star) One can define (so-called distributional) derivatives of the δ-function via

$$
\int_{-\infty}^{\infty} f(x) \delta^{(n)}(x) d x=(-1)^{n} f^{(n)}(0)
$$

for any n times differentiable function $f(x)$.
So we may be tempted to write a Taylor series for the δ-function,

$$
\delta(x+a)=\sum_{n=0}^{\infty} \frac{\delta^{(n)}(x)}{n!} a^{n}
$$

It appears that the left side is zero except at $x=-a$, while the right side is zero except at $x=0$. Resolve this paradox.

