ESM 2B, Homework 1

Due Date: 14:00 Wednesday, 16 February 2011.

Explain your answers! Problems marked (\star) are bonus ones.
1.1. Are the following sets of vectors linearly independent?
(a) $\{(1,-1,0),(-2,0,2),(0,3,-3)\} \subset \mathbb{R}^{3}$;
(b) $\{(1,1,0),(2,0,2),(0,1,1)\} \subset \mathbb{R}^{3}$;
(c) $\left\{x^{3}+x^{2}, x^{2}+3 x+1, x^{3}-5 x^{2}+1\right\} \subset \mathbb{R}[x]$, where $\mathbb{R}[x]$ is the space of polynomials with \mathbb{R}-coefficients.
1.2. Is it possible that vectors $v_{1}, \ldots, v_{5} \in \mathbb{R}^{5}$ are linearly dependent, but any 4 of them are linearly independent?
1.3. What is the dimension of $\operatorname{span}\{(2,3,2),(6,4,2),(-1,6,3)\} \subset \mathbb{R}^{3}$?
1.4. Find all values of a and b, such that $\{(1, a),(b, b)\}$ is a linearly dependent subset of \mathbb{C}^{2}.
1.5. Show that for any vector space V and any $v \in V$ the product $1 \cdot v$ is equal to v.
1.6. Which of the following sets are \mathbb{R}-vector spaces?
(a) Polynomials with real coefficients of degree at least n;
(b) continuous functions $f(x)$ on \mathbb{R} with $f(0)=0$;
(c) continuous functions $f(x)$ on \mathbb{R} with $f(0)=1$;
(d) bounded functions on \mathbb{R};
(e) arithmetic progressions with real entries;
(f) geometric progressions with real entries;
(\star) the set of functions $\{f(x)=a \sin (x+c) \mid a, c \in \mathbb{R}\}$.
1.7. Which of the following maps $V \times V \rightarrow \mathbb{F}$ are inner products?
(a) $\mathbb{F}=\mathbb{C}, V=\mathbb{C}^{2},\langle w \mid z\rangle=\overline{w_{1}} z_{2} ;$
(b) $\mathbb{F}=\mathbb{C}, V=\mathbb{C}^{2},\langle w \mid z\rangle=\overline{w_{1}} z_{2}-\overline{w_{2}} z_{1}$;
(c) $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{3},\langle x \mid y\rangle=x_{1} y_{2}-x_{2} y_{1}+3 x_{3} y_{3}$;
(d) $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{3},\langle x \mid y\rangle=x_{1} y_{2}+x_{2} y_{1}+3 x_{3} y_{3}$.
1.8. ($*$) Find dimensions of linear spaces from Exercise 1.6 (or show that they do not have finite bases).

