ESM 2B, Homework 12

Due Date: Tuesday, May 17.

Explain your answers! Problems marked $(*)$ are bonus ones.
12.1. Let X_{1}, X_{2}, \ldots be independent discrete random variables taking values in $\left\{-\frac{1}{2}, \frac{1}{2}\right\}$ with probability function

$$
p\left(-\frac{1}{2}\right)=q, \quad p\left(\frac{1}{2}\right)=(1-q),
$$

and $p(x)=0$ for all other values of x.
(a) Find the expectation for the random variable $Z_{N}=\frac{X_{1}+\cdots+X_{N}}{N}$ as $N \rightarrow \infty$.
(b) Let $Y_{n}=2^{-n} X_{n}$. Find the expectation for the random variable $Z_{N}=Y_{1}+\cdots+Y_{N}$ as $N \rightarrow \infty$.
12.2. Assume Peter leaves his office every day at a random time, goes to the bus stop, from where every 7 minutes leaves a bus.
(a) Determine the expected waiting time.
(b) After four days, Peter observed that he never waited longer than 6 minutes. What is the probability of this event?
(c) What is the probability that Peter waited at least one time longer than 5 minutes in 3 days?
12.3. The moment generating function of a certain random variable X is $M_{X}(t)=\frac{c}{c-t}$, where $c>0$ is a parameter. Determine the expectation and variance of X.
12.4. Suppose a random number generator produces uniformly distributed numbers X in the interval $[1,3]$, and another random number generator produces uniformly distributed numbers Y in the interval $[2,5]$. What is the probability that $X+Y \leq 5$?
12.5. (\star) Let X and Y be independent random variables that take non-negative real values and whose associated density functions are $f_{X}(t)=\lambda e^{-\lambda t}, f_{Y}(t)=\mu e^{-\mu t}$ for $t>0$, and $f_{X}(t)=$ $f_{Y}(t)=0$ for $t<0$. Compute the probability $P(a<X+Y<b)$ for real $a<b$.

