ESM 2B, Homework 2

Due Date: 14:00 Wednesday, 23 February 2011.

Explain your answers! Problems marked (\star) are bonus ones.

- **2.1.** Which of the following maps from \mathbb{R}^2 to \mathbb{R}^2 are linear operators?
 - (a) f(x,y) = (xy, x + y);
 - (b) g(x,y) = (x+y,2x).
- **2.2.** Which of the following maps are linear transformations?
 - (a) $A: \mathbb{R}^4 \to \mathbb{R}^3$, A(x, y, z, t) = (x 2y, y 2z, z + 2t);
 - (\star) $\mathcal{A}: \mathbb{R}[x] \to \mathbb{R}[x], (\mathcal{A}p)(x) = p(\alpha x^2 + \beta), \text{ where } \alpha, \beta \in \mathbb{R} \text{ are fixed numbers.}$
- **2.3.** Find the kernel and the image of the following linear maps:
 - (a) $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$, $\mathcal{A}v = 0$;
 - (b) $\mathcal{A}: \mathbb{C}^n \to \mathbb{C}^n$, $\mathcal{A}v = v$;
 - (c) $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$, $\mathcal{A}(x, y, z) = (y, z, 0)$;
 - (d) $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^3$, $\mathcal{A}(x, y, z, t) = (x y, y z, z t)$;
 - (\star) $\mathcal{A}: \mathbb{R}[x] \to \mathbb{R}[x], (\mathcal{A}p)(x) = p(\alpha x^2 + \beta), \text{ where } \alpha, \beta \in \mathbb{R} \text{ are fixed numbers.}$
- **2.4.** Compute matrices of linear maps from Problem 2.3 in some bases. Which of the matrices do not depend on bases?
- **2.5.** Let V be the space of polynomials with real coefficients of degree at most 2, and $\alpha \in \mathbb{R}$ is a fixed number, $\alpha \neq 0$. Define two maps $\mathcal{A}, \mathcal{B}: V \to V$ by

$$(\mathcal{A}p)(x) = p(\alpha x);$$
 $(\mathcal{B}p)(x) = p(x - \alpha).$

Show that \mathcal{A}, \mathcal{B} are linear operators, and compute the matrices of \mathcal{A} and \mathcal{B} in the basis $\{1, x, x^2\}$.

- **2.6.** Define $A = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 3 & 1 \\ 0 & -2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ -1 & 2 \\ 2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$. Compute the following products if possible:
 - (a) AB; (b) BA; (c) CA; (d) C^2 ; (e) A^2 ; (f) AC; (g) CB; (h) CAB.
- **2.7.** (a) Find all the matrices $X \in \text{Mat}_2$ commuting with $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
 - (*) Find all the matrices $X \in \operatorname{Mat}_n$ commuting with $A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$.