School of Engineering and Science

ESM 2B, Homework 2

Due Date: 14:00 Wednesday, 23 February 2011.

Explain your answers! Problems marked (\star) are bonus ones.
2.1. Which of the following maps from \mathbb{R}^{2} to \mathbb{R}^{2} are linear operators?
(a) $f(x, y)=(x y, x+y)$;
(b) $g(x, y)=(x+y, 2 x)$.
2.2. Which of the following maps are linear transformations?
(a) $\mathcal{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, \mathcal{A}(x, y, z, t)=(x-2 y, y-2 z, z+2 t)$;
$(\star) \mathcal{A}: \mathbb{R}[x] \rightarrow \mathbb{R}[x],(\mathcal{A} p)(x)=p\left(\alpha x^{2}+\beta\right)$, where $\alpha, \beta \in \mathbb{R}$ are fixed numbers.
2.3. Find the kernel and the image of the following linear maps:
(a) $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{A} v=0$;
(b) $\mathcal{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \mathcal{A} v=v$;
(c) $\mathcal{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathcal{A}(x, y, z)=(y, z, 0)$;
(d) $\mathcal{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, \mathcal{A}(x, y, z, t)=(x-y, y-z, z-t)$;
$(\star) \mathcal{A}: \mathbb{R}[x] \rightarrow \mathbb{R}[x],(\mathcal{A} p)(x)=p\left(\alpha x^{2}+\beta\right)$, where $\alpha, \beta \in \mathbb{R}$ are fixed numbers.
2.4. Compute matrices of linear maps from Problem 2.3 in some bases. Which of the matrices do not depend on bases?
2.5. Let V be the space of polynomials with real coefficients of degree at most 2 , and $\alpha \in \mathbb{R}$ is a fixed number, $\alpha \neq 0$. Define two maps $\mathcal{A}, \mathcal{B}: V \rightarrow V$ by

$$
(\mathcal{A} p)(x)=p(\alpha x) ; \quad(\mathcal{B} p)(x)=p(x-\alpha)
$$

Show that \mathcal{A}, \mathcal{B} are linear operators, and compute the matrices of \mathcal{A} and \mathcal{B} in the basis $\left\{1, x, x^{2}\right\}$.
2.6. Define $A=\left(\begin{array}{ccc}2 & 0 & 1 \\ -1 & 3 & 1 \\ 0 & -2 & 1\end{array}\right), B=\left(\begin{array}{cc}2 & 0 \\ -1 & 2 \\ 2 & 3\end{array}\right), C=\left(\begin{array}{lll}2 & 1 & 1\end{array}\right)$. Compute the following products if possible:
(a) $A B$;
(b) $B A$;
(c) $C A$;
(d) C^{2};
(e) A^{2};
(f) $A C$;
(g) $C B$;
(h) $C A B$.
2.7. (a) Find all the matrices $X \in \mathrm{Mat}_{2}$ commuting with $A=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.
(\star) Find all the matrices $X \in$ Mat $_{n}$ commuting with $A=\left(\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right)$.

