ESM 2B, Homework 3

Due Date: 14:00 Wednesday, 2 March 2011.

Explain your answers! Problems marked (\star) are bonus ones.
3.1. Given matrices $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 1 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 2 \\ 2 & 1\end{array}\right), C=\left(\begin{array}{lll}2 & 0 & 1\end{array}\right)$, compute the following products if possible:
(a) $C C^{t}$;
(b) $C^{t} C$;
(c) $C^{t} A B$;
(d) $B^{t} A^{t} C$;
(e) $B C A$;
(f) $B^{t} C^{t} A$.
3.2. Solve the following equation with respect $\{x, y, z\}$:

$$
\left(\left(\begin{array}{cc}
x & y \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
y & 2
\end{array}\right)^{t}+\left(\begin{array}{cc}
0 & -x y \\
2 & -2
\end{array}\right)\right)^{t}=\left(\begin{array}{cc}
4 & 2 z \\
2 & -1
\end{array}\right)
$$

3.3. (a) Let $V=\mathbb{R}^{3}$, define an inner product on V by $\langle x \mid y\rangle=x_{1} y_{3}+x_{2} y_{2}+x_{3} y_{1}+2 x_{1} y_{1}+2 x_{3} y_{3}$.

Write down the Gram matrix $G=\left(g_{i j}\right)$ (where $\left.g_{i j}=\left\langle e_{i} \mid e_{j}\right\rangle\right)$ of the inner product in standard basis, and verify that $\langle x \mid y\rangle=x^{t} G y$.
(\star) Let V be an inner product space, and G a Gram matrix in basis $\left\{e_{i}\right\}, i \leq n$. Let $\left\{f_{j}\right\}$, $j \leq n$ be another basis of V. For any $j \leq n$ one can write

$$
f_{j}=\sum_{i=1}^{n} c_{i j} e_{i}
$$

for some $c_{i j} \in \mathbb{F}$. Denote by C the matrix composed of the coefficients $c_{i j}$.
Show that the Gram matrix G^{\prime} of the inner product in the basis $\left\{f_{j}\right\}$ is equal to $\overline{C^{t}} G C$.
3.4. Find all the solutions x of the following linear systems
(a) $\left\{\begin{aligned} x_{1}+x_{2}+2 x_{3} & =1 \\ 2 x_{1}-x_{2} & =3 \\ -2 x_{1}-x_{3} & =2\end{aligned}\right.$
(b) $\left\{\begin{array}{rlrl}x_{1}-x_{2} & =3 \\ +2 x_{2}-x_{3} & =10 \\ 3 x_{1}+2 x_{2}+5 x_{3} & = & -2\end{array}\right.$
(c) $\left\{\begin{aligned} 2 x_{1}-x_{2}+x_{3} & =3 \\ -x_{1}+2 x_{2}-x_{3} & =-5 \\ x_{1}+x_{2} & =2\end{aligned}\right.$
(d) $\left\{\begin{aligned} 2 x_{1}-x_{2}+x_{3} & =5 \\ -x_{1}+2 x_{2}-x_{3} & =-4 \\ x_{1}+x_{2} & =1\end{aligned}\right.$
by identifying the coefficient matrix A, and then using Gauss elimination.
3.5. Compute the rank of the following matrices
(a) $\left(\begin{array}{ccc}-1 & 1 & 3 \\ 1 & 6 & 2 \\ 4 & 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}0 & 1 & 1 \\ 3 & 2 & 3 \\ 2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & -1 & 1 & 0 \\ 3 & 2 & 1 & 1 \\ 4 & 0 & 2 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 2 & 1 & 1 \\ 3 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$

