ESM 2B, Homework 4

Due Date: 14:00 Wednesday, 9 March 2011.

Explain your answers! Problems marked (\star) are bonus ones.
4.1. Are the following matrices invertible? If yes, compute the inverses.
(a) $\left(\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 3 \\ 4 & 3 & 5\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 3 & 1 \\ 4 & 0 & 2\end{array}\right)$
(d) $\left(\begin{array}{cccc}2 & 1 & 3 & 0 \\ 0 & 1 & -2 & 1 \\ 3 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$
4.2. Compute determinants of the following matrices:
(a) $\left(\begin{array}{ccc}0 & 1 & 2 \\ 1 & 3 & 1 \\ 3 & 2 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & -2 \\ 3 & 2 & -3 \\ -2 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 5 & 0 \\ 4 & 0 & 2\end{array}\right)\left(\begin{array}{ccc}2 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 0 & -1\end{array}\right)$
(d) $\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6\end{array}\right)$
(e) $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$
(f) $\left(\begin{array}{ccccc}0 & 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 & 0\end{array}\right)$
4.3. (a) Show that if A is an invertible matrix, then A^{n} is also invertible for any positive integer n.
(b) Is it true that if A^{n} is invertible for some positive integer n then A is invertible?
(c) Find matrices $A \in \operatorname{Mat}_{n \times m}$ and $B \in \operatorname{Mat}_{m \times n}$ such that $A B=I$, but $B A \neq I$.
4.4. (\star) Let $A \in \operatorname{Mat}_{n}$, $\operatorname{det} A=0$. Show that there exist $B, C \in \operatorname{Mat}_{n}$, such that

$$
A B=C A=0
$$

4.5. (\star) Let $A, B \in \mathrm{Mat}_{n}$, and let $A B+I$ be invertible. Show that $B A+I$ is also invertible.

